Skip to main content

Optimization of Ionic Liquid Pretreatment of Mixed Softwood by Response Surface Methodology and Reutilization of Ionic Liquid from Hydrolysate

Abstract

We investigated the feasibility of producing bioethanol from mixed softwood pretreated with the ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim]Ac). The optimal pretreatment conditions were determined by response surface methodology to be 100°C for 15 h, and the fermentable sugar yield was estimated to be 92.5%. Efficient pretreatment of softwood was maintained even after reutilizing [Bmim]Ac up to four times. Through the enzymatic saccharification and subsequent fermentation, bioethanol was produced with 0.42 g/g of yield and 0.24 g/L/h of productivity, which clearly suggests that efficient and economical bioethanol production can be achieved by optimizing pretreatment processes and reutilizing ionic liquid.

This is a preview of subscription content, access via your institution.

References

  1. Himmel, M. E., S. Y. Ding, D. K. Johnson, W. S. Adney, M. R. Nimlos, J. W. Brady, and T. D. Foust (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Sci. 315: 804–807.

    CAS  Article  Google Scholar 

  2. Liu, C. Z., F. Wang, A. R. Stiles, and C. Guo (2012) Ionic liquids for biofuel production: Opportunities and challenges. Appl. Energ. 92: 406–414.

    CAS  Article  Google Scholar 

  3. Wang, H., G. Gurau, and R. D. Rogers (2012) Ionic liquid processing of cellulose. Chem. Soc. Rev. 41: 1519–1537.

    CAS  Article  Google Scholar 

  4. Sun, N., M. Rahman, Y. Qin, M. L. Maxim, H. Rodriguez, and R. D. Rogers (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem. 11: 646–655.

    CAS  Article  Google Scholar 

  5. Cox, B. J. and J. G. Ekerdt (2013) Pretreatment of yellow pine in an acidic ionic liquid: Extraction of hemicellulose and lignin to facilitate enzymatic digestion. Bioresour. Technol. 134: 59–65.

    CAS  Article  Google Scholar 

  6. Perez-Pimienta, J. A., M. G. Lopez-Ortega, P. Varanasi, V. Stavila, G. Cheng, S. Singh, and B. A. Simmons (2013) Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass. Bioresour. Technol. 127: 18–24.

    CAS  Article  Google Scholar 

  7. Varanasi, P., P. Singh, R. Arora, P. D. Adams, M. Auer, B. A. Simmons, and S. Singh (2012) Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment. Bioresour. Technol. 126: 156–161.

    CAS  Article  Google Scholar 

  8. Cheng, G., P. Varanasi, C. Li, H. Liu, Y. B. Melnichenko, B. A. Simmons, M. S. Kent, and S. Singh (2011) Transition of cellulose crystalline structure and surface morphology of biomass as a function of ionic liquid pretreatment and its relation to enzymatic hydrolysis. Biomacromol. 12: 933–941.

    CAS  Article  Google Scholar 

  9. Li, C. L., B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, K. P. Vogel, B. A. Simmons, and S. Singh (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101: 4900–4906.

    CAS  Article  Google Scholar 

  10. Tan, H. T. and K. T. Lee (2012) Understanding the impact of ionic liquid pretreatment on biomass and enzymatic hydrolysis. Chem. Eng. J. 183: 448–458.

    CAS  Article  Google Scholar 

  11. Ang, T. N., G. C. Ngoh, A. S. Chua, and M. G. Lee (2012) Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses. Biotechnol. Biofuels. 5

    Google Scholar 

  12. Weerachanchai, P., S. S. J. Leong, M. W. Chang, C. B. Ching, and J. M. Lee (2012) Improvement of biomass properties by pretreatment with ionic liquids for bioconversion process. Bioresour. Technol. 111: 453–459.

    CAS  Article  Google Scholar 

  13. Xu, F., Y. C. Shi, and D. Wang (2012) Enhanced production of glucose and xylose with partial dissolution of corn stover in ionic liquid, 1-ethyl-3-methylimidazolium acetate. Bioresour. Technol. 114: 720–724.

    CAS  Article  Google Scholar 

  14. Ha, S. H., N. L. Mai, G. An, and Y. M. Koo (2011) Microwaveassisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis. Bioresour. Technol. 102: 1214–1219.

    CAS  Article  Google Scholar 

  15. Nguyen, T. A. D., K. R. Kim, S. J. Han, H. Y. Cho, J. W. Kim, S. M. Park, J. C. Park, and S. J. Sim (2010) Pretreatment of rice straw with ammonia and ionic liquid for lignocellulose conversion to fermentable sugars. Bioresour. Technol. 101: 7432–7438.

    CAS  Article  Google Scholar 

  16. Zhu, Z., M. Zhu, and Z. Wu (2012) Pretreatment of sugarcane bagasse with NH4OH-H2O2 and ionic liquid for efficient hydrolysis and bioethanol production. Bioresour. Technol. 119: 199–207.

    CAS  Article  Google Scholar 

  17. Docherty, K. M. and C. F. Kulpa (2005) Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 7: 185–189.

    CAS  Article  Google Scholar 

  18. Santos, A. G., B. D. Ribeiro, D. S. Alvianob, and M. A. Z. Coelho (2014) Toxicity of ionic liquids toward microorganisms interesting to the food industry. RSC Adv. 4: 37157–37163.

    CAS  Article  Google Scholar 

  19. Datta, S., B. Holmes, J. Park, Z. Chen, D. Dibble, M. Hadi, H. Blanch, B. Simmons, and R. Sapra (2010) Ionic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chem. 12: 338–345.

    CAS  Article  Google Scholar 

  20. Sitepu, I., S. Shi, B. A. Simmons, S. W. Singer, K. Boundy-Mills, and C. W. Simmons (2014) Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate. FEMS. Yeast Res. 14: 1286–1294.

    CAS  Article  Google Scholar 

  21. Simmons, C. W, A. P. Reddy, J. S. Vandergheynst, B. A. Simmons, and S. W. Singer (2014) Bacillus coagulans tolerance to 1-ethyl-3-methylimidazolium-based ionic liquids in aqueous and solidstate thermophilic culture. Biotechnol. Prog. 30: 311–316.

    CAS  Article  Google Scholar 

  22. Auxenfans, T., S. Buchoux, K. Djellab, C. Avondo, E. Husson, and C. Sarazin (2012) Mild pretreatment and enzymatic saccharification of cellulose with recycled ionic liquids towards one-batch process. Carbohydr. Polym. 90: 805–813.

    CAS  Article  Google Scholar 

  23. Li, Q., Y. C. He, M. Xian, G. Jun, X. Xu, J. M. Yang, and L. Z. Li (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour. Technol. 100: 3570–3575.

    CAS  Article  Google Scholar 

  24. Li, B., J. Asikkala, I. Filpponen, and D. S. Argyropoulos (2010) Factors affecting wood dissolution and regeneration of ionic liquids. Ind. Eng. Chem. Res. 49: 2477–2484.

    CAS  Article  Google Scholar 

  25. Qiu, Z. H., G. M. Aita, and S. Mahalaxmi (2014) Optimization by response surface methodology of processing conditions for the ionic liquid pretreatment of energy cane bagasse. J. Chem. Technol. Biot. 89: 682–689.

    CAS  Article  Google Scholar 

  26. Yoon, L. W., T. N. Ang, G. C. Ngoh, and A. S. M. Chua (2012) Regression analysis on ionic liquid pretreatment of sugarcane bagasse and assessment of structural changes. Biomass Bioenerg. 36: 160–169.

    CAS  Article  Google Scholar 

  27. Trinh, L. T. P., J. W. Lee, and H. J. Lee (2016) Acidified glycerol pretreatment for enhanced ethanol production from rice straw. Biomass Bioenerg. 94: 39–45

    Article  Google Scholar 

  28. Jeong, S. Y., L. T. P. Trinh, H. J. Lee, and J. W. Lee (2014) Improvement of the fermentability of oxalic acid hydrolysates by detoxification using electrodialysis and adsorption. Bioresour. Technol. 152: 444–449.

    CAS  Article  Google Scholar 

  29. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2012) Determination of structural carbohydrates and lignin in biomass. National Renewable Energy Laboratory, NREL/TP-510-42618.

    Google Scholar 

  30. Lee, S. H., T. V. Doherty, R. J. Linhardt, and J. S. Dordick (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102: 1368–1376.

    CAS  Article  Google Scholar 

  31. Park, S., J. O. Baker, M. E. Himmel, P. A. Parilla, and D. K. Johnson (2010) Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3.

    Google Scholar 

  32. Qiu, Z., G. M. Aita, and M. S. Walker (2012) Effect of ionic liquid pretreatment on the chemical composition, structure and enzymatic hydrolysis of energy cane bagasse. Bioresour. Technol. 117: 251–256.

    CAS  Article  Google Scholar 

  33. Lee, K. M., G. C. Ngoh, and A. S. M. Chua (2013) Process optimization and performance evaluation on sequential ionic liquid dissolution-solid acid saccharification of sago waste. Bioresour. Technol. 130: 1–7.

    CAS  Article  Google Scholar 

  34. Donohoe, B. S., S. R. Decker, M. P. Tucker, M. E. Himmel, and T. B. Vinzant (2008) Visualizing lignin coalescence and migration through maize cell walls following thermochemical pretreatment. Biotechnol. Bioeng. 101: 913–925.

    CAS  Article  Google Scholar 

  35. Torr, K. M., K. T. Love, O. P. Cetinkol, L. A. Donaldson, A. George, B. M. Holmes, and B. A. Simmons (2012) The impact of ionic liquid pretreatment on the chemistry and enzymatic digestibility of Pinus radiata compression wood. Green Chem. 14: 778–787.

    CAS  Article  Google Scholar 

  36. Haykir, N. I., E. Bahcegul, N. Bicak, and U. Bakir (2013) Pretreatment of cotton stalk with ionic liquids including 2-hydroxy ethyl ammonium formate to enhance biomass digestibility. Ind. Crop. Prod. 41: 430–436.

    CAS  Article  Google Scholar 

  37. Haykir, N. I. and U. Bakir (2013) Ionic liquid pretreatment allows utilization of high substrate loadings in enzymatic hydrolysis of biomass to produce ethanol from cotton stalks. Ind. Crop. Prod. 51: 408–414.

    CAS  Article  Google Scholar 

  38. Bergenstrahle, M., L. A. Berglund, and K. Mazeau (2007) Thermal response in crystalline I beta cellulose: A molecular dynamics study. J. Phys. Chem. B. 111: 9138–9145.

    Article  Google Scholar 

  39. Fu, D. and G. Mazza (2011a) Aqueous ionic liquid pretreatment of straw. Bioresour. Technol. 102: 7008–7011.

    CAS  Article  Google Scholar 

  40. Fu, D. and G. Mazza (2011b) Optimization of processing conditions for the pretreatment of wheat straw using aqueous ionic liquid. Bioresour. Technol. 102: 8003–8010.

    CAS  Article  Google Scholar 

  41. Trinh, L. T. P., Y. J. Lee, J. W. Lee, and H. J. Lee (2015) Characterization of ionic liquid pretreatment and the bioconversion of pretreated mixed softwood biomass. Biomass Bioenerg. 81: 1–8.

    CAS  Article  Google Scholar 

  42. Cao, Y. and T. Mu (2014) Comprehensive Investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind. Eng. Chem. Res. 53: 8651–8664.

    CAS  Article  Google Scholar 

  43. Shafiei, M., H. Zilouei, A. Zamani, M. J. Taherzadeh, and K. Karimi (2013) Enhancement of ethanol production from spruce wood chips by ionic liquid pretreatment. Appl. Energ. 102: 163–169.

    CAS  Article  Google Scholar 

  44. Guragain, Y. N., J. D. Coninck, F. Husson, A. Durand, and S. K. Rakshit (2011) Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth. Bioresour. Technol. 102: 4416–4424.

    CAS  Article  Google Scholar 

  45. Moniruzzaman, M. and T. Ono (2013) Separation and characterization of cellulose fibers from cypress wood treated with ionic liquid prior to laccase treatment. Bioresour. Technol. 127: 132–137.

    CAS  Article  Google Scholar 

  46. Cheng, G., P. Varanasi, R. Arora, V. Stavila, B. A. Simmons, M. S. Kent, and S. Singh (2012) Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. J. Phys. Chem. B. 116: 10049–10054.

    CAS  Article  Google Scholar 

  47. Wada, M., M. Ike, and K. Tokuyasu (2010) Enzymatic hydrolysis of cellulose I is greatly accelerated via its conversion to the cellulose II hydrate form. Polym. Degrad. Stabil. 95: 543–548.

    CAS  Article  Google Scholar 

  48. Mai, N. L., S. H. Ha, and Y. M. Koo (2014) Efficient pretreatment of lignocellulose in ionic liquids/co-solvent for enzymatic hydrolysis enhancement into fermentable sugars. Proc. Biochem. 49: 1144–1151.

    CAS  Article  Google Scholar 

  49. Lim, W. S., J. Y Kim, H. Y. Kim, J. W. Choi, I. G. Choi, and J. W. Lee (2013) Structural properties of pretreated biomass from different acid pretreatments and their effects on simultaneous saccharification and ethanol fermentation. Bioresour. Technol. 139: 214–219.

    CAS  Article  Google Scholar 

  50. Zhu, J. Y. and X. J. Pan (2010) Woody biomass pretreatment for cellulosic ethanol production: Technology and energy consumption evaluation. Bioresour. Technol. 101: 4992–5002.

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Won-Heong Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trinh, L.T.P., Lee, YJ., Lee, JW. et al. Optimization of Ionic Liquid Pretreatment of Mixed Softwood by Response Surface Methodology and Reutilization of Ionic Liquid from Hydrolysate. Biotechnol Bioproc E 23, 228–237 (2018). https://doi.org/10.1007/s12257-017-0209-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0209-x

Keywords

  • 1-Butyl-3-methylimidazolium acetate
  • bioethanol
  • ionic liquid
  • pretreatment
  • recycling
  • response surface methodology