Skip to main content
Log in

Surface display of lipolytic enzyme, Lipase A and Lipase B of Bacillus subtilis on the Bacillus subtilis spore

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

For the enhancement of lipase stability in organic solvent containing reaction, live immobilization method, using Bacillus subtilis spore as a display vehicle was attempted. Bacillus subtilis coat protein cotE was used as an anchoring motif for the display of lipA and lipB of Bacillus subtilis. Using this motif, lipolytic enzyme Lipase A and Lipase B were functionally displayed on the surface of Bacillus subtilis spore. Purified spore displaying CotE-LipB fusion protein showed higher lipolytic activity compared to that of CotE-LipA fusion protein. The surface localization of Lipase B was verified with flow cytometry and protease accessibility experiment. Spore displayed lipase retained its activity against acetone and benzene which completely deactivated free soluble lipase in the same reaction condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar, A., K. Dhar, S. S. Kanwar, and P. K. Arora (2016) Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online 18: 2.

    Article  Google Scholar 

  2. Cowan, D. (1996) Industrial enzyme technology. Trends Biotecchnol. 14: 177–178.

    Article  CAS  Google Scholar 

  3. Ueda, M. (2016) Establishment of cell surface engineering and its development. Biosci. Biotechnol. Biochem. 80: 1243–1253.

    Article  CAS  Google Scholar 

  4. Boder, E. T. and K. D. Wittrup (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553–558.

    Article  CAS  Google Scholar 

  5. Jung, H. C., J. M. Lebeault, and J. G. Pan (1998) Surface display of Zymomonas mobilis levansucrase by using the ice-nucleation protein of Pseudomonas syringae. Nat. Biotechnol. 16: 576–580.

    Article  CAS  Google Scholar 

  6. Richins, R. D., I. Kaneva, A. Mulchandani, and W. Chen (1997) Biodegradation of organophosphorus pesticides by surfaceexpressed organophosphorus hydrolase. Nat. Biotechnol. 15: 984–987.

    Article  CAS  Google Scholar 

  7. Sousa C., A. Cebolla, and V. de Lorenzo (1994) Enhanced metalloadsorption of bacterial cells displaying poly-His peptides. Nat. Biotechnol. 14: 1017–1020.

    Article  Google Scholar 

  8. Georgiou G., C. Stathopoulos, P. S. Daugherty, A. R. Nayak, B. L. Iverson, and R. Curtiss 3rd (1997) Display of heterologous proteins on the surface of microorganisms: From the screening of combinatorial libraries to live recombinant vaccines. Nat. Biotechnol. 15: 29–34.

    Article  CAS  Google Scholar 

  9. Kim, J. H., C. S. Lee, and B. G. Kim (2005) Spore-displayed streptavidin: A live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331: 210–214.

    Article  CAS  Google Scholar 

  10. Kim, J. H., C. Roh, C. W. Lee, D. Kyung, S. K. Choi, H. C. Jung, J. G. Pan, and B. G. Kim (2007) Bacterial surface display of GFPUV on Bacillus subtilis spores. J. Microbiol. Biotechnol. 17: 677–680.

    CAS  Google Scholar 

  11. Kim, J. H. (2009) Method for expression of proteins on spore surface. US Patent, 7,582,426 B2.

    Google Scholar 

  12. Kim, J. H. and W. Schumann (2009) Display of proteins on Bacillus subtilis endospores. Cell Mol. Life Sci. 66: 3127–3136.

    Article  CAS  Google Scholar 

  13. Hwang, B. Y., B. G. Kim and J. H. Kim (2011). Bacterial surface display of co-factor containing enzyme, w-transaminase from Vibrio fluvialis using Bacillus subtilis spore display system. Biosci. Biotechnol. Biochem. 75: 1862–1865.

    Article  CAS  Google Scholar 

  14. Hwang, B. Y., J. G. Pan, B. G. Kim and J. H. Kim (2013) Functional display of active tetrameric β-galactosidase using Bacillus subtilis spore display system. J. Nanosci. Nanotechnol. 13: 2313–2319.

    Article  CAS  Google Scholar 

  15. Richter, A., W. Kim, J. H. Kim, and W. Schumann (2015) Disulfide bonds of proteins displayed on spores of Bacillus subtilis can occur spontaneously. Curr. Microbiol. 71: 156–161.

    Article  CAS  Google Scholar 

  16. Hosseini-Abari, A., B. G. Kim, S. H. Lee, G. Emtiazi, W. Kim, and J. H. Kim (2016) Surface display of bacterial tyrosinase on spores of Bacillus subtilis using CotE as an anchor protein. J. Basic Microbiol. 56: 1331–1337.

    Article  CAS  Google Scholar 

  17. Schreuder, M. P., A. T. Mooren, H. Y. Toschka, C. T. Verrips, and F. M. Klis (1996) Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115–120.

    Article  CAS  Google Scholar 

  18. Washida, M., S. Takahashi, M. Ueda, and A. Tanaka (2001) Spacer-mediated display of active lipase on the yeast cell surface. Appl. Microbiol. Biotechnol. 56: 681–686.

    Article  CAS  Google Scholar 

  19. Kobayashi, G., J. Toida, T. Akamatsu, H. Yamamoto, T. Shida, and J. Sekiguchi (2000) Accumulation of an artificial cell wall-binding lipase by Bacillus subtilis wprA and/or sigD mutants. FEMS Microbiol. Lett. 188: 165–169.

    Article  CAS  Google Scholar 

  20. Lee, S. H., J. I. Choi, S. J. Park, S. Y. Lee, and B. C. Park (2004) Display of bacterial lipase on the Escherichia coli cell surface by using FadL as an anchoring motif and use of the enzyme in enantioselective biocatalysis. Appl. Environ. Microbiol. 70: 5074–5080.

    Article  CAS  Google Scholar 

  21. Haima, P., D. van Sinderen, H. Schotting, S. Bron, and G. Venema (1990) Development of a beta-galactosidase alphacomplementation system for molecular cloning in Bacillus subtilis. Gene 86: 63–69.

    Article  CAS  Google Scholar 

  22. Dartois V., A. Baulard, K. Schanck, and C. Colson (1992) Cloning, nucleotide sequence and expression in Escherichia coli of a lipase gene from Bacillus subtilis 168. Biochim. Biophys. Acta 1131: 253–260.

    Article  CAS  Google Scholar 

  23. Eggert T., G. Pencreac'h, I. Douchet, R. Verger, and K. E. Jaeger (2000) A novel extracellular esterase from Bacillus subtilis and its conversion to a monoacylglycerol hydrolase. Eur. J. Biochem. 267: 6459–6469.

    Article  CAS  Google Scholar 

  24. Eggert, T., G. van Pouderoyen, B. W. Dijkstra, and K. E. Jaeger (2001) Lipolytic enzymes LipA and LipB from Bacillus subtilis differ in regulation of gene expression, biochemical properties, and three-dimensional structure. FEBS Lett. 502: 89–92.

    Article  CAS  Google Scholar 

  25. Van Pouderoyen, G., T. Eggert, K. E. Jaeger, and B. W. Dijkstra (2001) The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. J. Mol. Biol. 309: 215–226.

    Article  Google Scholar 

  26. Li, L., D. G. Kang, and H. Cha (2004) Functional display of foreign protein on surface of Escherichia coli using N-terminal domain of ice nucleation protein. Biotechnol. Bioeng. 85: 214–221.

    Article  CAS  Google Scholar 

  27. Kwon, S. J., H. C. Jung, and J. G. Pan (2007) Transgalactosylation in a water-solvent biphasic reaction system with beta-galactosidase displayed on the surfaces of Bacillus subtilis spores. Appl. Environ. Microbiol. 73: 2251–2256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junehyung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J. Surface display of lipolytic enzyme, Lipase A and Lipase B of Bacillus subtilis on the Bacillus subtilis spore. Biotechnol Bioproc E 22, 462–468 (2017). https://doi.org/10.1007/s12257-017-0205-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0205-1

Keywords

Navigation