Skip to main content
Log in

Multiplex PCR with the blunt hairpin primers for next generation sequencing

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The multiplex PCR is one of the important methods to enrich the target DNAs for next generation sequencing. The non-specific amplification and interaction between the primers are the pivotal challenges of multiplex PCR. Here, we introduce the novel blunt hairpin primers for effective reducing the primer dimers and mispriming events. We also used a pair of auxiliary primers to enhance PCR efficiency. We simultaneously amplified 89 target regions from 44 samples and sequenced all amplicons on ion torrent PGM platform. Among all the filtrated amplicons (3438 different amplicons), 99.7, 97.6, 90.1 and 72.8% had sequencing depths fell within 200, 100, 50 and 25-fold range. The sequencing depth variations among all the samples were less than 27-fold. We also amplified multiplex regions with blunt hairpin, stick hairpin and normal linear primers, and the blunt hairpin primers could significantly reduce the amount of primer dimers and unspecific products.These results show that multiplex PCR with the blunt hairpin primers is a flexible, specific and economical target-region captured approach for the next generation sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mamanova, L., A. J. Coffey, C. E. Scott, I. Kozarewa, E. H. Turner, A. Kumar, E. Howard, J. Shendure, and D. J. Turner (2010) Target-enrichment strategies for next-generation sequencing. Nat. Meth. 7: 111–118.

    Article  CAS  Google Scholar 

  2. Varley, K. E. and R. D. Mitra (2008) Nested Patch PCR enables highly multiplexed mutation discovery in candidate genes. Genome Res. 18: 1844–1850.

    Article  CAS  Google Scholar 

  3. Dahl, F., M. Gullberg, J. Stenberg, U. Landegren, and M. Nilsson (2005) Multiplex amplification enabled by selective circularization of large sets of genomic DNA fragments. Nucleic Acids Res. 33: e71.

    Article  Google Scholar 

  4. Dahl, F., J. Stenberg, S. Fredriksson, K. Welch, M. Zhang, M. Nilsson, D. Bicknell, W. F. Bodmer, R. W. Davis, and H. Ji (2007) Multigene amplification and massively parallel sequencing for cancer mutation discovery. Proc. Nat. Acad. Sci. USA. 104: 9387–9392.

    Article  CAS  Google Scholar 

  5. Meuzelaar, L. S., O. Lancaster, J. P. Pasche, G. Kopal, and A. J. Brookes (2007) MegaPlex PCR: a strategy for multiplex amplification. Nat. Meth. 4: 835–837.

    Article  CAS  Google Scholar 

  6. Teer, J. K., L. L. Bonnycastle, P. S. Chines, N. F. Hansen, N. Aoyama, A. J. Swift, H. O. Abaan, T. J. Albert, N. C. S. Program, E. H. Margulies, E. D. Green, F. S. Collins, J. C. Mullikin, and L. G. Biesecker (2010) Systematic comparison of three genomic enrichment methods for massively parallel DNA sequencing. Gen. Res. 20: 1420–1431.

    Article  CAS  Google Scholar 

  7. Kaboev, O. K., L. A. Luchkina, A. N. Tret'iakov, and A. R. Bahrmand (2000) PCR hot start using primers with the structure of molecular beacons (hairpin-like structure). Nucleic Acids Res. 28: E94.

    Article  CAS  Google Scholar 

  8. Ailenberg, M. and M. Silverman (2000) Controlled hot start and improved specificity in carrying out PCR utilizing touch-up and loop incorporated primers (TULIPS). BioTechniques 29: 1018–1020, 1022-1024.

    CAS  Google Scholar 

  9. Nazarenko, I., B. Lowe, M. Darfler, P. Ikonomi, D. Schuster, and A. Rashtchian (2002) Multiplex quantitative PCR using selfquenched primers labeled with a single fluorophore. Nucleic Acids Res. 30: e37.

    Article  Google Scholar 

  10. Stahlberg, A., P. M. Krzyzanowski, J. B. Jackson, M. Egyud, L. Stein, and T. E. Godfrey (2016) Simple, multiplexed, PCR-based barcoding of DNA enables sensitive mutation detection in liquid biopsies using sequencing. Nucleic Acids Res. 44: e105.

    Article  Google Scholar 

  11. Nguyen-Dumont, T., B. J. Pope, F. Hammet, M. C. Southey, and D. J. Park (2013) A high-plex PCR approach for massively parallel sequencing. BioTechniques. 55: 69–74.

    Article  CAS  Google Scholar 

  12. Han, J. (2013) Multiplex PCr in molecular differential diagnosis of microbial infections: methods, utility, and platforms. pp. 627–646. Advanced Techniques in Diagnostic Microbiology. Springer, City.

    Chapter  Google Scholar 

  13. Nguyen-Dumont, T., F. Hammet, M. Mahmoodi, B. J. Pope, G. G. Giles, J. L. Hopper, M. C. Southey, and D. J. Park (2015) Abridged adapter primers increase the target scope of Hi-Plex. BioTechniques. 58: 33–36.

    Article  Google Scholar 

  14. Chen, K., Y. X. Zhou, K. Li, L. X. Qi, Q. F. Zhang, M. C. Wang, and J. H. Xiao (2016) A novel three-round multiplex PCR for SNP genotyping with next generation sequencing. Anal. Bioanal. Chem. 408: 4371–4377.

    Article  CAS  Google Scholar 

  15. Depristo, M. A. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Gen. 43: 491–498.

    Article  CAS  Google Scholar 

  16. Mokry, M., H. Feitsma, I. J. Nijman, E. de Bruijn, P. J. van der Zaag, V. Guryev, and E. Cuppen (2010) Accurate SNP and mutation detection by targeted custom microarray-based genomic enrichment of short-fragment sequencing libraries. Nucleic Acids Res. 38: e116.

    Article  Google Scholar 

  17. Nielsen, R., J. S. Paul, A. Albrechtsen, and Y. S. Song (2011) Genotype and SNP calling from next-generation sequencing data. Nat. Rev. Gen. 12: 443–451.

    Article  CAS  Google Scholar 

  18. Campbell, N. R., S. A. Harmon, and S. R. Narum (2015) Genotyping-in-Thousands by sequencing (GT-seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Mol. Ecol. Res. 15: 855–867.

    Article  CAS  Google Scholar 

  19. Pan, W., M. Byrne-Steele, C. Wang, S. Lu, S. Clemmons, R. J. Zahorchak, and J. Han (2014) DNA polymerase preference determines PCR priming efficiency. BMC Biotechnol. 14: 10.

    Article  Google Scholar 

  20. Craig, D. W., J. V. Pearson, S. Szelinger, A. Sekar, M. Redman, J. J. Corneveaux, T. L. Pawlowski, T. Laub, G. Nunn, D. A. Stephan, N. Homer, and M. J. Huentelman (2008) Identification of genetic variants using bar-coded multiplexed sequencing. Nature Meth. 5: 887–893.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua Xiao.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Zhou, Y., Li, K. et al. Multiplex PCR with the blunt hairpin primers for next generation sequencing. Biotechnol Bioproc E 22, 347–351 (2017). https://doi.org/10.1007/s12257-017-0133-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0133-0

Keywords

Navigation