Skip to main content
Log in

Protein engineering for covalent immobilization and enhanced stability through incorporation of multiple noncanonical amino acids

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we demonstrate the application of multiple functional properties of proteins generated through coupling of residue-specific and site-specific incorporation method. With green fluorescent protein (GFP) as a model protein, we constructed multifunctional GFP through sitespecific incorporation of L-3,4-dihydroxyphenylalanine (DOPA) and residue-specific incorporation of (2S, 4S)-4- fluoroproline (4S-FP) or L-homopropargylglycine (hpg). Fluorescence analysis revealed a conjugation efficiency of approximately 20% for conjugation of DOPA-containing variants GFPdopa, GFPdp[4S-FP], and GFPdphpg onto chitosan. While incorporation of 4S-FP improved protein folding and stability, hpg incorporation into GFP allowed conjugation with fluorescent dye/polyethylene glycol (PEG). In addition, the modification of GFPhpg and GFPdphpg with PEG through Cu(I)-catalyzed click reaction increased protein thermal stability by about two-fold of the wild-type GFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, C. C. and P. G. Schultz (2010) Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79: 413–444.

    Article  CAS  Google Scholar 

  2. Johnson, J. A., Y. Y. Lu, J. A. Van Deventer, and D. A. Tirrell (2010) Residue-specific incorporation of non-canonical amino acids into proteins: Recent developments and applications. Curr. Opin. Chem. Biol. 14: 774–780.

    Article  CAS  Google Scholar 

  3. Romero, P. A. and F. H. Arnold (2009) Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell. Biol. 10: 866–876.

    Article  CAS  Google Scholar 

  4. Bornscheuer, U. T. and M. Pohl (2001) Improved biocatalysts by directed evolution and rational protein design. Curr. Opin. Chem. Biol. 2: 137–143.

    Article  Google Scholar 

  5. Ravikumar, Y., S. P. Nadarajan, T. H. Yoo, C. S, Lee, and H. Yun (2015) Unnatural amino acid mutagenesis-based enzyme engineering. Trends Biotechnol. 33: 462–470.

    Article  CAS  Google Scholar 

  6. Deepankumar, K., M. Shon, S. P. Nadarajan, G. Shin, S. Mathew, N. Ayyadurai, B. G. Kim, S. H. Choi, S. H. Lee, and H. Yun (2014) Enhancing thermostability and organic solvent tolerance of ω-Transaminase through global incorporation of fluorotyro-sine. Adv. Synth. Catal. 356: 993–998.

    Article  CAS  Google Scholar 

  7. Ravikumar, Y., S. P. Nadarajan, T. H. Yoo, and H. Yun (2015) Incorporating unnatural amino acids to engineer biocatalysts for industrial bioprocess applications. Biotechnol. J. 10: 1862–1876.

    Article  CAS  Google Scholar 

  8. Ayyadurai, N., K. Deepankumar, N. S. Prabhu, S. Lee, and H. Yun (2011) A facile and efficient method for the incorporation of multiple unnatural amino acids into a single protein. Chem. Commun. 47: 3430–3432.

    Article  CAS  Google Scholar 

  9. Sletten, E. M. and C. R. Bertozzi (2009) Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. Engl. 48: 6974–6998.

    Article  CAS  Google Scholar 

  10. Wong, L. S., F. Khan, and J. Micklefield (2009) Selective covalent protein immobilization: Strategies and applications. Chem. Rev. 109: 4025–4053.

    Article  CAS  Google Scholar 

  11. Glazer, A. N. (1970) Specific chemical modification of proteins. Annu. Rev. Biochem. 39: 101–130.

    Article  CAS  Google Scholar 

  12. Ayyadurai, N., N. S. Prabhu, K. Deepankumar, Y. J. Jang, N. Chitrapriya, E. Song, N. Lee, S. K. Kim, B. G. Kim, N. Soundrarajan, S. Lee, H. J. Cha, N. Budisa, and H. Yun (2011) Bioconjugation of L-3,4-Dihydroxyphenylalanine containing protein with a polysaccharide. Bioconjugate Chem. 22: 551–555.

    Article  CAS  Google Scholar 

  13. Umeda, A., G. N. Thibodeaux, J. Zhu, Y. Lee, and Z. J. Zhang (2009) Site-specific protein cross-linking with genetically incorporated 3,4-dihydroxy-L-phenylalanine. ChemBioChem. 25: 1302–1304.

    Article  Google Scholar 

  14. Smith, M. T., J. C. Wu, C. T. Varner, and B. C. Bundy (2013) Enhanced protein stability through minimally invasive, direct, covalent, and site-specific immobilization. Biotechnol. Prog. 29: 247–254.

    Article  CAS  Google Scholar 

  15. Raliski, B. K., C. A. Howard, and D. D. Young (2014) Site-specific protein immobilization using unnatural amino acids. Bioconjugate Chem. 25: 1916–1920.

    Article  CAS  Google Scholar 

  16. Wu, J. C., C. H. Hutchings, M. J. Lindsay, C. J. Werner, and B. C. Bundy (2015) Enhanced enzyme stability through site-directed covalent immobilization. J. Biotechnol. 193: 83–90.

    Article  CAS  Google Scholar 

  17. Alfonta, L., Z. Zhang, S. Uryu, J. A. Loo, and P. G. Schultz (2003) Site-specific incorporation of a redox-active amino acid into proteins. J. Am. Chem. Soc. 125: 14662–14663.

    Article  CAS  Google Scholar 

  18. Lee, H. S., G. Spraggon, P. G. Schultz, and F. Wang (2009) Genetic incorporation of a metal-ion chelating amino acid into proteins as a biophysical probe. J. Am. Chem. Soc. 131: 2481–2483.

    Article  CAS  Google Scholar 

  19. Steiner, T., P. Hess, J. H. Bae, B. Wiltschi, L. Moroder, and N. Budisa (2008) Synthetic biology of proteins: tuning GFPs folding and stability with fluoroproline. PLoS One 3: e1680.

    Article  Google Scholar 

  20. Deepankumar, K., S. P. Nadarajan, N. Ayyadurai, and H. Yun (2013) Enhancing the biophysical properties of mRFP1 through incorporation of fluoroproline. Biochem. Biophys. Res. Commun. 440: 509–514.

    Article  CAS  Google Scholar 

  21. Deepankumar, K., S. P. Nadarajan, S. Mathew, S. G. Lee, T. H. Yoo, E. Y. Hong, B. G. Kim, and H. Yun (2015) Engineering transaminase for stability enhancement and site-specific immobilization through multiple noncanonical amino acids incorporation. ChemCatChem. 7: 417–421.

    Article  CAS  Google Scholar 

  22. Ngo, J. T., B. M. Babin, J. A. Champion, E. M. Schuman, and D. A. Tirrell (2012) State-selective metabolic labeling of cellular proteins. ACS Chem. Biol. 7: 1326–1330.

    Article  CAS  Google Scholar 

  23. Nagasundarapandian, S., L. Merkel, N. Budisa, R. Govindan, N. Ayyadurai, S. Sriram, H. Yun, and S. G. Lee (2010) Engineering protein sequence composition for folding robustness renders efficient noncanonical amino acid incorporations. Chembiochem. 11: 2521–2524.

    Article  CAS  Google Scholar 

  24. Even-Desrumeaux, K., D. Baty, and P. Chames (2010) Strong and oriented immobilization of single domain antibodies from crude bacterial lysates for high-throughput compatible cost-effective antibody array generation. Mol. Bio. Syst. 6: 2241–2248.

    CAS  Google Scholar 

  25. Wolschner, C., A. Giese, H. A. Kretzschmar, R. Huber, L. Moroder, and N. Budisa (2009) Design of anti-and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein. Proc. Natl. Acad. Sci. USA. 106: 7756–7761.

    Article  CAS  Google Scholar 

  26. Liu, L. B., L. Burdine, and T. Kodadek (2006) Chemistry of periodate-mediated cross-linking of 3,4-dihydroxylphenylalaninecontaining molecules to proteins. J. Am. Chem. Soc. 128: 15228–15230.

    Article  CAS  Google Scholar 

  27. Byun, J. W., J. U. Kim, W. J. Chung, and Y. S. Lee (2004) Surface-grafted polystyrene beads with comb-like poly(ethylene glycol) chains: Preparation and biological application. Macromol. Biosci. 4: 512–519.

    Article  CAS  Google Scholar 

  28. Niu, M., M. Du, Z. Gao, C. Yang, X. Lu, R. Qiao, and M. Gao (2010) Monodispersed magnetic polystyrene beads with excellent colloidal stability and strong magnetic response. Macromol. Rapid. Commun. 31: 1805–1810.

    Article  CAS  Google Scholar 

  29. González-Valdez, J., M. Rito-Palomares, and J. Benavides (2012) Advances and trends in the design, analysis, and characterization of polymer-protein conjugates for "PEGylaided" bioprocesses. Anal. Bioanal. Chem. 403: 2225–2235.

    Article  Google Scholar 

  30. Deiters, A., T. A. Cropp, D. Summerer, M. Mukherji, and P. G. Schultz (2004) Site-specific PEGylation of proteins containing unnatural amino acids. Bioorg. Med. Chem. Lett. 14: 5743–5745.

    Article  CAS  Google Scholar 

  31. de Lencastre Novaes, L. C., P. G. Mazzola, A. Jr. Pessoa, and T. C. Penna (2010) Effect of polyethylene glycol on the thermal stability of green fluorescent protein. Biotechnol. Prog. 26: 252–256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyungdon Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepankumar, K., Prabhu, N.S., Kim, JH. et al. Protein engineering for covalent immobilization and enhanced stability through incorporation of multiple noncanonical amino acids. Biotechnol Bioproc E 22, 248–255 (2017). https://doi.org/10.1007/s12257-017-0127-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0127-y

Keywords

Navigation