Skip to main content
Log in

Rheological properties and volatile composition of fermented milk prepared by exopolysaccharide-producing Lactobacillus acidophilus n.v. Er2 317/402 strain Narine

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Fermented milk products were made using a probiotic strain of human origin, Lactobacillus acidophilus n.v. Er2 317/402 strain Narine. The effects of the strain on the texture, rheology, microstructure, and volatile profiling of fermented milk products over a period of 25 days under refrigerated storage conditions were investigated using steady and dynamic rheological tests, confocal laser scanning microscopy (CLSM), and headspace solid-phase microextraction gas chromatography mass spectrometry, respectively. CLSM images confirmed that exopolysaccharides (EPSs) from Narine were large in size and interacted with proteins. EPSs (50 mg) were obtained after 8 h of incubation. Volatome profiling of Narine fermented milk revealed 15 volatile compounds, including 2-heptanone, 2-nonanone, acetoin, isobutyric acid, isovaleric acid, and 2-phenylethanol. EPSs produced from L. acidophilus n.v. Er2 317/402 strain Narine gave the fermented milk a smooth ropy texture. The natural, soft-bodied, drinkable, and pleasant flavor of Narine makes it an attractive food ingredient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO/WHO (2006) Probiotics in Food. Health and Nutritional Properties and Guidelines for Evaluation, FAO Food and Nutritional Paper No.85: ISBN 92-5-105513-0.

    Google Scholar 

  2. De Vuyst, L. and B. Degeest (1999) Exopolysaccharides from lactic acid bacteria: Technological bottlenecks and practical solutions. Macromol. Symp. 140: 31–41.

    Article  Google Scholar 

  3. Tomas, M. S., M. Clandia-Otero, V. Ocana, and M. Elena Nader-Macias (2000) Production of antimicrobial substances by lactic acid bacteria I: Determination of hydrogen peroxide. Methods Mol. Biol. 268: 337–346.

    Google Scholar 

  4. Hassan, A. N., J. F. Frank, and M. Elsoda (2003) Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy. Int. Dairy J. 13: 755–762.

    Article  CAS  Google Scholar 

  5. Hidalgo-Cantabrana, C., B. Sanchez, C. Milani, M. Ventura, A. Margolles, and P. Ruas-Madiedo (2014) Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl. Environ. Microbiol. 80: 9–18.

    Article  CAS  Google Scholar 

  6. Fanning, S., L. J. Hall, M. Cronin, A. Zomer, J. MacSharry, D. Goulding, M. O’Connel-Motherway, F. Shanahan, K. Nally, G. Dougan, and D. van Sinderen (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc. Natl. Acad. Sci. USA 109: 2108–2113.

    Article  CAS  Google Scholar 

  7. Akopyan, G., R. Madoyan, E. Dilanyan, and K. Kanetani (2004) Therapeutic effects of L. acidofilus n.v. Er-2 strain 317/402 “Narine”. Milk Sci. 53: 35–63.

    Google Scholar 

  8. Anisimova, T. I. and R. A. Arakelyan (2002) Bacterial strain L. acidophilus n.v Er-2 strain 317/402 Narine AAA used in the production of preparations and of dietetic, therapeutic and prophylactic products for treating dysbacteriosis and the consequences thereof. Euorpean Patent 1 186 654 A1.

    Google Scholar 

  9. Mkrtchyan, H., S. Gibbons, S. Heidelberger, M. Zloh, and K. H. Limaki (2010) Purification, characterisation and identification of acidocin LCHV, an antimicrobial peptide produced by Lactobacillus acidophilus n.v. Er 317/402 strain Narine. Int. J. Antimicrob. Ag. 35: 255–260.

    Article  CAS  Google Scholar 

  10. Charchoghlyan, H., H. Kwon, D. J. Hwang, J. S. Lee, J. Lee, and M. Kim (2016) Inhibition of Cronobacter sakazakii by Lactobacillus acidophilus n.v. Er2 317/402. Kor. J. Food Sci. Anim. Resour. 36: 635–640.

    Article  Google Scholar 

  11. Ismail, B. and K. M. Nampoothiri (2010) Exopolysaccharide production and prevention of syneresis in starch using encapsulated probiotic Lactobacillus plantarum. Food Technol. Biotech. 48: 484–489.

    CAS  Google Scholar 

  12. Penna, A. L. B., K. Sivieri, and M. N. Oliveira (2001) Relation between quality and rheological properties of lactic beverages. J. Food Eng. 49: 7–13.

    Article  Google Scholar 

  13. Pan, D. D., Z. Wu, T. Peng, X. Q. Zeng, and H. Li (2014) Volatile organic compounds profile during milk fermentation by Lactobacillus pentosus and correlations between volatiles flavor and carbohydrate metabolism. J. Dairy Sci. 97: 624–631.

    Article  CAS  Google Scholar 

  14. Ruas-Madiedo, P. and C. G. de los Reyes-Gavilan (2005) Invited Review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci. 88: 843–856.

    Article  CAS  Google Scholar 

  15. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugar and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  16. Zacarchenco, P. B. and S. Massaguer-Roig (2006) Properties of Streptococcus thermophilus fermented milk containing variable concentrations of Bifidobacterium longum and Lactobacillus acidophilus. Braz. J. Microbiol. 37: 338–344.

    Article  CAS  Google Scholar 

  17. Dowling, N. E. (1999) Mechanical behavior of Materials: Engineering methods for deformation, fracture and fatigue. 2nd ed., pp. 443–445. Prentice Hall, NJ, USA.

    Google Scholar 

  18. Hassan, A. N., J. F. Frank, and M. Elsoda (2003) Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy. Int. Dairy J. 13: 755–762.

    Article  CAS  Google Scholar 

  19. Hassan. A. N., J. F. Frank, and K. B. Qvist (2002) Direct observation of bacterial exopolysaccharides in dairy products using confocal scanning laser microscopy. J. Dairy Sci. 85: 1705–1708.

    Article  CAS  Google Scholar 

  20. Dos Santos, M. S., E. Martendal, and E. Carasek (2011) Determination of THMs in soft drink by solid-phase microextraction and gas chromatography. Food Chem. 127: 290–295.

    Article  Google Scholar 

  21. Guggisberg, D., J. Cuthbert-Steven, P. Piccinal, U. Butikofer, and P. Eberhard (2009) Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. Int. Dairy J. 19: 107–115.

    Article  CAS  Google Scholar 

  22. Ciron, I. E., V. L. Gee, A. L. Kelly, and M. A. E. Auty (2011) Effect of microstructural of heat-treated milk on rheology and sensory properties of reduced fat yoghurt. Food Hydrocoll. 25: 1470–1476.

    Article  CAS  Google Scholar 

  23. Petry, S., S. Furlan, M. J. Crepean, J. Cerning, and M. Desmazeand (2000) Factors affecting exocellular polysaccharide production by Lactobacillus delbrueski subsp. bulgaricus grown in a chemically defined medium. Appl. Environ. Microbiol. 66: 3427–3431.

    Article  CAS  Google Scholar 

  24. Palomba, S., S. Cavella, E. Torrieri, A. Piccolo, P. Mazzei, G. Blaiotta, and V. Ventorino, and O. Pepe (2012) Polyphasic screening, homopolysaccharide composition, and viscoelastic behavior of wheat sourdough from a Leuconostoc lactis and Lactobacillus curvatus exopolysaccharide-producing starter culture. Appl. Environ. Microbiol. 78: 2737–2747.

    Article  CAS  Google Scholar 

  25. Penna, A. L. B., K. Sivieri, and M. N. Oliveira (2001) Relation between quality and rheological properties of lactic beverages. J. Food Eng. 49: 7–13.

    Article  Google Scholar 

  26. Folkenberg, D. M., P. Dejmek, A. Skriver, H. S. Guldager, and R. Ipsen (2006) Sensory and rheological screening of exopolysaccharide producing strains of bacterial yoghurt cultures. Int. Dairy J. 16: 111–118.

    Article  CAS  Google Scholar 

  27. Hassan, A. N., J. F. Frank, K. A. Schmidt, and S. I. Shalabi (1996) Rheological properties of yogurt made with encapsulated nonropy lactic cultures. J. Dairy Sci. 79: 2091–2097.

    Article  CAS  Google Scholar 

  28. Florencia, F. S. (2013) Rheology of spreadable goat cheese made with autochthonous lactic cultures different in their ability to produce exopolysaccharide. Food Sci. Technol. 33: 233–238.

    Article  Google Scholar 

  29. Tabilo-Munizaga, G. and G. V. Barbosa-Canovas (2005) Rheology for the food industry. J. Food Eng. 67: 147–156.

    Article  Google Scholar 

  30. Vaningelgem, F., M. Zamfir, F. Mozzi, T. Adriany, M. Vancanneyt, J. Swings, and L. D. Vuyst (2004) Biodiversity of exopolysaccharides produced by Streptococcus thermophiles strains is reflected in their production and their molecular and functional characteristics. Appl. Environ. Microbiol. 70: 900–912.

    Article  CAS  Google Scholar 

  31. Krzeminski, A, K. Groβhable, and J. Hinrichs (2011) Structural properties of stirred yoghurt as influenced by whey proteins. LWT-Food Sci. Technol. 44: 2134–2140.

    Article  CAS  Google Scholar 

  32. Winny, R. and H. N. Mishra (2011) Scientific and technical aspects of yogurt aroma and taste: A Review. Compr. Rev. Food Sci. Food Saf. 10: 208–220.

    Article  Google Scholar 

  33. Cheng, H. (2010) Volatile flavor compounds in yogurt: A review. Crit. Rev. Food Sci. 50: 938–950.

    Article  CAS  Google Scholar 

  34. Routray, W. and H. N. Mishra (2011) Scientific and technical aspects of yogurt aroma and taste: A review. Compr. Rev. Food Sci. Food Saf. 10: 208–220.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myunghee Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charchoghlyan, H., Bae, JE., Kwon, H. et al. Rheological properties and volatile composition of fermented milk prepared by exopolysaccharide-producing Lactobacillus acidophilus n.v. Er2 317/402 strain Narine. Biotechnol Bioproc E 22, 327–338 (2017). https://doi.org/10.1007/s12257-017-0065-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0065-8

Keywords

Navigation