Biotechnology and Bioprocess Engineering

, Volume 22, Issue 1, pp 68–75 | Cite as

Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta

  • Muhammad Rizwan
  • Ghulam Mujtaba
  • Kisay LeeEmail author
Research Paper


The effects of iron sources with different speciation and anionic moieties (ferric chloride, ferrous chloride, ferric EDTA, ferrous EDTA, ferric ammonium sulfate, and ferrous ammonium sulfate) on the cell growth and the production of energy storage (lipid and carbohydrate) from Dunaliella tertiolecta were investigated. The influence of iron dosage was also compared in the range from 0.65 mg/L (1X) to 6.5 mg/L (10X) as Fe concentration. Best cell growth rate was achieved when ferrous ammonium sulfate was used. Ferric EDTA resulted in higher lipid content than other iron sources, while ferrous ammonium sulfate favored the accumulation of carbohydrate among six iron sources. The accumulations of lipid and carbohydrate as energy storage competed each other and thus both contents did not increase together. In the presence of ferric EDTA, lipid content is increasing, while carbohydrate content is decreasing. On the contrary, lipid content is decreasing while carbohydrate is increasing in the presence of ferric ammonium sulfate. Because the overall carbohydrate content was larger than that of lipid, bioethanol production would be more advantageous than biodiesel production with the present D. tertiolecta strain if the carbohydrate in D. tertiolecta contains a high fraction of glucose with a good saccharification yield.


microalgae Dunaliella tertiolecta iron cell growth lipid carbohydrate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, B., Y. Li, N. Wu, and C. Q. Lan (2008) CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 79: 707–718.CrossRefGoogle Scholar
  2. 2.
    O. K. Lee, D. H. Sung, C. G. Lee, and E. Y. Lee (2015) Sustainable production of liquid biofuels from renewable microalgae biomass. J. Ind. Eng. Chem. 29: 24–31.CrossRefGoogle Scholar
  3. 3.
    Kwon, M. H. and S. H. Yeom (2015) Optimization of one-step extraction and transesterification process for biodiesel production from the marine microalga Nannochloropsis sp. KMMCC 290 cultivated in a raceway pond. Bioetchnol. Bioproc. Eng. 20: 276–283.CrossRefGoogle Scholar
  4. 4.
    Kim, J. and J.-Y. Lee (2016) Enhanced autotrophic growth of Nannochloris sp. with trona buffer for sustainable carbon recycle. Bioetchnol. Bioproc. Eng. 10: 422–429.Google Scholar
  5. 5.
    Siaut, M., S. Cuiné, C. Cagnon, B. Fessler, M. Nguyen, P. Carrier, A. Beyly, F. Beisson, C. Triantaphylidès, Y. Li-Beisson, and G. Peltier (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: Characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol. 11: 7.CrossRefGoogle Scholar
  6. 6.
    Kim, G., G. Mujtaba, M. Rizwan, and K. Lee (2014) Environmental stress strategies for stimulating lipid production from microlagae for biodiesel. Appl. Chem. Eng. 25: 553–558.CrossRefGoogle Scholar
  7. 7.
    Mujtaba, G., W. Choi, C. G. Lee, and K. Lee (2012) Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions. Bioresour. Technol. 123: 279–283.CrossRefGoogle Scholar
  8. 8.
    Kim, G., C. H. Lee, and K. Lee (2016) Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation. Kor. J. Chem. Eng. 33: 230–237.CrossRefGoogle Scholar
  9. 9.
    Liu, Z. Y., G. C. Wang, and B. C. Zhou (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 99: 4717–4722.CrossRefGoogle Scholar
  10. 10.
    Kim, G., J. Bae, and K. Lee (2016) Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Bioresour. Technol. 205: 274–279.CrossRefGoogle Scholar
  11. 11.
    Naito, K., M. Matsui, and I. Imai (2005) Ability of marine eukaryotic red tide microalgae to utilize insoluble iron. Harmful Algae 4: 1021–1032.CrossRefGoogle Scholar
  12. 12.
    Chiu, S. Y., C. Y. Kao, M. T. Tsai, S. C. Ong, C, H, Chen, and C. S. Lin (2009) Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration. Bioresour. Technol. 100: 833–838.CrossRefGoogle Scholar
  13. 13.
    Li, Y., Y. F. Chen, P. Chen, M. Min, W. Zhou, B. Martinez, J. Zhu, and R. Ruan (2011) Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 102: 5138–5144.Google Scholar
  14. 14.
    Oijen, T. V., M. Van Leeuwe, W. W. C. Gieskes, and H. J. W. De Baar (2004) Effects of iron limitation on photosynthesis and carbohydrate metabolism in the Antarctic diatom Chaetoceros brevis (Bacillariophyceae). Eur. J. Phycol. 39: 161–171.CrossRefGoogle Scholar
  15. 15.
    Yeesang, C. and B. Cheirsilp (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 102: 3034–3040.CrossRefGoogle Scholar
  16. 16.
    Mata, T. M., R. Almeida, and N. S. Caetano (2013) Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta. Chem. Eng. Trans. 32: 973–978.Google Scholar
  17. 17.
    Lee, O. K., A. L. Kim, D. H. Seong, C. G. Lee, Y. T. Jung, J. W. Lee, and E. Y. Lee (2013) Chemoenzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga, Dunaliella tertiolecta. Bioresour. Technol. 132: 197–201.CrossRefGoogle Scholar
  18. 18.
    Guillard, R. R. L (1975) Culture of phytoplankton for feeding marine invertebrates. pp. 26-60. In Smith, W. L. and M. H. Chanley (eds.) Culture of Marine Invertebrate Animals. Plenum Press, NY, USA.Google Scholar
  19. 19.
    Dubois, M., K. A. Gilles, J. K. Hamilton, P. Reberts, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.CrossRefGoogle Scholar
  20. 20.
    Van Wychen, S., K. Ramirez, and L. M. Laurens (2013) Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification. Laboratory Analytical Procedure. p. 12. National Renewable Energy Laboratory, Golden, CO, USA.CrossRefGoogle Scholar
  21. 21.
    Terauchi, A. M., G. Peers, M. C. Kobayashi, K. K. Niyogi, and S. S. Merchant (2010) Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis. Photosyn. Res. 105: 39–49.CrossRefGoogle Scholar
  22. 22.
    Concas, A., A. Steriti, M. Pisu, and G. Cao (2014) Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors. Bioresour. Technol. 153: 340–350.CrossRefGoogle Scholar
  23. 23.
    Ren, H. Y., B. F. Liu, F. Kong, L. Zhao, G. J. Xie, and N. Q. Ren (2014) Enhanced lipid accumulation of green microalga Scenedesmus sp. by metal ions and EDTA addition. Bioresour. Technol. 169: 763–767.CrossRefGoogle Scholar
  24. 24.
    Sun, X., Y. Cao, H. Xu, Y. Liu, J. Sun, D. Qiao, and Y. Cao (2014) Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresour. Technol. 155: 204–212.CrossRefGoogle Scholar
  25. 25.
    Baky, H. H. A. E., G. S. El-Baroty, A. Bouaid, M. Martinez, and J. Aracil (2012) Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing CO2 and Fe3+ levels for biodiesel production. Bioresour. Technol. 119: 429–432.CrossRefGoogle Scholar
  26. 26.
    Ruangsomboon, S., M. Ganmanee, and S. Choochote (2013) Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga, Scenedesmus dimorphus KMITL. J. Appl. Phycol. 25: 867–874.CrossRefGoogle Scholar
  27. 27.
    Sakthivel, R., S. Elumalai, and M. M. Arif (2011) Microalgae lipid research, past, present: A critical review for biodiesel production, in the future. J. Exp. Sci. 2: 29–49.Google Scholar
  28. 28.
    Singh, B., A. Guldhe, I. Rawat, and F. Bux (2014) Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sustain. Energy Rev. 29: 216–245.CrossRefGoogle Scholar
  29. 29.
    Kim, G., G. Mujtaba, and K. Lee (2016) Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae 31: 257–266.Google Scholar
  30. 30.
    Radakovits, R., R. E. Jinkerson, A. Darzins, and M. C. Posewitz (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell 9: 486–501.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Environmental Engineering and EnergyMyongji UniversityYonginKorea
  2. 2.Department of Environmental SciencesUniversity of HaripurHaripurPakistan
  3. 3.Department of Energy and Environment EngineeringDawood University of Engineering and TechnologyKarachiPakistan

Personalised recommendations