Biotechnology and Bioprocess Engineering

, Volume 21, Issue 6, pp 720–725 | Cite as

Single amino acid replacement transforms mCherry to a far-red fluorescent protein

  • Yeji Kim
  • Kyungju Song
  • Hwajin Lee
  • Dohyun Kim
  • Jintae Kim
  • Minsub Chung
Research Paper

Abstract

Far-red fluorescent proteins are beneficial for imaging in mammals. Here, starting from mCherry, the most commonly used among the different types of red fluorescent proteins (RFP), not having a H-bond network in its original form, we sought to recover the hydrogen bond network in mCherry. By comparing the structure of wtGFP and mCherry, we focused on a few key residues involved in a proton wire, and discovered an I197T mutant that showed a more red-shifted fluorescence. The detailed optical and photo-switching properties of related engineered RFPs are described. This study will guide further development of monomeric far-red FPs.

Keywords

far-red fluorescent proteins mCherry mutagenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stamatas, G. N., M. Southall, and N. Kollias (2006) In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared. J. Invest. Dermatol. 126: 1753–1760.CrossRefGoogle Scholar
  2. 2.
    Wang, L., W. C. Jackson, P. A. Steinbach, and R. Y. Tsien (2004) Evolution of new non-antibody proteins via iterative somatic hypermutation. Proc. Natl. Acad. Sci. USA. 101: 16745–16749.CrossRefGoogle Scholar
  3. 3.
    Lin, M. Z. (2009) Autofluorescent proteins with excitation in the optical window for intravital imaging in mammals. Chem. Biol. 16: 1169–1179.CrossRefGoogle Scholar
  4. 4.
    Strack, R. L. (2009) A rapidly maturing far-red derivative of DsRed-Express2 for whole-cell labeling. Biochem. 48: 8279–8281.CrossRefGoogle Scholar
  5. 5.
    Abbyad, P., W. Childs, X. Shi, and S. G. Boxer (2007) Dynamic Stokes shift in green fluorescent protein variants. Proc. Natl. Acad. Sci. USA. 104: 20189–20194.CrossRefGoogle Scholar
  6. 6.
    Shaner, N. C. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22: 1567–1572.CrossRefGoogle Scholar
  7. 7.
    Merzlyak and M. Ekaterina (2007) Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nat. Meth. 4: 555–557.CrossRefGoogle Scholar
  8. 8.
    Chattoraj, M., B. A. King, G. U. Bublitz, and S. G. Boxer (1996) Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl. Acad. Sci. USA. 93: 8362–8367.CrossRefGoogle Scholar
  9. 9.
    Heikal, A. A., S. T. Hess, G. S. Baird, R. Y. Tsien, and W. W. Webb (2000) Molecular spectroscopy and dynamics of intrinsically fluorescent proteins: Coral red (dsRed) and yellow (Citrine). Proc. Natl. Acad. Sci. USA. 97: 11996–2001.CrossRefGoogle Scholar
  10. 10.
    Strack, R. L., D. E. Strongin, L. Mets, B. S. Glick, and R. J. Keenan (2010) Chromophore formation in DsRed occurs by a branched pathway. J. Am. Chem. Soc. 132: 8496–8505.CrossRefGoogle Scholar
  11. 11.
    Moore, M. M. e (2012) Recovery of red fluorescent protein chromophore maturation deficiency through rational design. PLoS One 7: e52463.CrossRefGoogle Scholar
  12. 12.
    Kneen, M., J. Farinas, Y. Li, and S. Verkman (1998) Green fluorescent protein as a noninvasive intracellular pH indicator. Biophys. J. 74: 1591–1599.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yeji Kim
    • 1
  • Kyungju Song
    • 1
  • Hwajin Lee
    • 1
  • Dohyun Kim
    • 2
  • Jintae Kim
    • 3
  • Minsub Chung
    • 1
  1. 1.Department of Chemical EngineeringHongik UniversitySeoulKorea
  2. 2.Department of Mechanical EngineeringMyongji UniversityYonginKorea
  3. 3.Department of Electronics EngineeringKonkuk UniversitySeoulKorea

Personalised recommendations