Skip to main content
Log in

TB trifusion antigen adsorbed on calcium phosphate nanoparticles stimulates strong cellular immunity in mice

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Among various vaccine candidates, subunit vaccines play an important role in immune protection against tuberculosis (TB). Calcium phosphate (CP) is considered as a strong inorganic adjuvant due to its great potential in increasing immune responses. The purpose of this study was to evaluate specific immune responses following the administration of trifusion-CP nanoparticles. The physiochemical properties of these nanoparticles, including morphology, particle size, zeta potential and adsorption rate, were measured in vitro. Subcutaneous immunization was performed three times on days 0, 14, and 28. Two weeks after the last administration, IFN-gamma, IL-4, and TGF-beta levels were measured by indirect enzyme linked immunosorbent assay (ELISA). The trifusion protein was successfully adsorbed onto calcium phosphate nanoparticles. The mean sizes of the resultant trifusion- CPN and CPN were 97.84 ± 12.08 and 67 ± 11.85 nm, respectively. CPN containing trifusion had stronger ability to induce IFN-gamma than the control groups. IL-4 and TGF-beta secretions in trifusion and trifusion-CPN groups were higher than those in the PBS group. However, there was no significant (p > 0.05) difference in IL-4 and TGFbeta concentrations between trifusion group and trifusion- CPN group. Therefore, calcium phosphate nanoparticles are good candidates for immunization against TB because antigen can be easily adsorbed onto CPN and strong cellular immune responses against CPN-antigen can be stimulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chan, J., S. Mehta, S. Bharrhan, Y. Chen, J. M. Achkar, A. Casadevall, and J. Flynn (2014) The role of B cells and humoral immunity in Mycobacterium tuberculosis infection. Semin. Immunol. 26: 588–600.

    Article  CAS  Google Scholar 

  2. Gagneux, S. (2012) Host–pathogen coevolution in human tuberculosis. Philos. Trans. R. Soc. B: Biol. Sci. 367: 850–859.

    Article  CAS  Google Scholar 

  3. Nelson, L., E. Talbot, M. Mwasekaga, P. Ngirubiu, R. Mwansa, M. Notha, and C. Wells (2005) Antituberculosis drug resistance and anonymous HIV surveillance in tuberculosis patients in Botswana, 2002. Lancet 366: 488–490.

    Article  CAS  Google Scholar 

  4. Ryan, N. J. and J. H. Lo (2014) Delamanid: First global approval. Drugs 74: 1041–1045.

    Article  CAS  Google Scholar 

  5. Cohen, J. (2013) Approval of novel TB drug celebrated-with restraint. Science 339: 130-130.

  6. Aronson, N. E., M. Santosham, G. W. Comstock, R. S. Howard, L. H. Moulton, E. R. Rhoades, and L. H. Harrison (2004) Longterm efficacy of BCG vaccine in American Indians and Alaska Natives: A 60-year follow-up study. JAMA 291: 2086–2091.

    Article  CAS  Google Scholar 

  7. Andersen, P. and T. M. Doherty (2005) The success and failure of BCG—implications for a novel tuberculosis vaccine. Nat. Rev. Microbiol. 3: 656–662.

    Article  CAS  Google Scholar 

  8. Rook, G. A., K. Dheda, and A. Zumla (2005) Immune responses to tuberculosis in developing countries: Implications for new vaccines. Nat. Rev. Immunol. 5: 661–667.

    Article  CAS  Google Scholar 

  9. Ahsan, M. J. (2015) Recent advances in the development of vaccines for tuberculosis. Therapeutic Adv. Vaccines 3: 66–75.

    Article  CAS  Google Scholar 

  10. Montagnani, C., E. Chiappini, L. Galli, and M. de Martino (2014) Vaccine against tuberculosis: What’s new? BMC Infectious Diseases 14: S2.

    Article  Google Scholar 

  11. Knudsen, N. P. H., S. Nørskov-Lauritsen, G. M. Dolganov, G. K. Schoolnik, T. Lindenstrøm, P. Andersen, E. M. Agger, and C. Aagaard (2014) Tuberculosis vaccine with high predicted population coverage and compatibility with modern diagnostics. Proc. Natl. Acad. Sci. 111: 1096–1101.

    Article  CAS  Google Scholar 

  12. Amini, Y., M. tebianian, N. Mosavari, M. fasihi ramandi, S. M. Ebrahimi, H. Najminejad, M. Dabaghian, and M. Abdollahpour (2016) Development of an effective delivery system for intranasal immunization against Mycobacterium tuberculosis ESAT-6 antigen. Artif. Cell. Nanomed. Biotechnol. 28: 1–6.

    Google Scholar 

  13. Mahmood, A., S. Srivastava, S. Tripathi, M. A. Ansari, M. Owais, and A. Arora (2011) Molecular characterization of secretory proteins Rv3619c and Rv3620c from Mycobacterium tuberculosis H37Rv. FEBS J. 278: 341–353.

    Article  CAS  Google Scholar 

  14. Bonanni, D., L. Rindi, N. Lari, and C. Garzelli (2005) Immunogenicity of mycobacterial PPE44 (Rv2770c) in Mycobacterium bovis BCG-infected mice. J. Med. Microbiol. 54: 443–448.

    Article  CAS  Google Scholar 

  15. Romano, M., L. Rindi, H. Korf, D. Bonanni, P. -Y. Adnet, F. Jurion, C. Garzelli, and K. Huygen (2008) Immunogenicity and protective efficacy of tuberculosis subunit vaccines expressing PPE44 (Rv2770c). Vaccine 26: 6053–6063.

    Article  CAS  Google Scholar 

  16. Lin, P. L., J. Dietrich, E. Tan, R. M. Abalos, J. Burgos, C. Bigbee, M. Bigbee, L. Milk, H. P. Gideon, and M. Rodgers (2012) The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J. Clin. Invest. 122:303.

    Article  CAS  Google Scholar 

  17. Hu, Y., F. Movahedzadeh, N. G. Stoker, and A. R. Coates (2006) Deletion of the Mycobacterium tuberculosis α-crystallin-like hspX gene causes increased bacterial growth in vivo. Infect. Immun. 74: 861–868.

    Article  CAS  Google Scholar 

  18. Niu, H., J. Peng, C. Bai, X. Liu, L. Hu, Y. Luo, B. Wang, Y. Zhang, J. Chen, and H. Yu (2015) Multi-stage tuberculosis subunit vaccine candidate LT69 provides high protection against Mycobacterium tuberculosis infection in mice. PLoS One 10: e0130641.

    Article  Google Scholar 

  19. Yuan, X., X. Teng, Y. Jing, J. Ma, M. Tian, Q. Yu, L. Zhou, R. Wang, W. Wang, and L. Li (2015) A live attenuated BCG vaccine overexpressing multistage antigens Ag85B and HspX provides superior protection against Mycobacterium tuberculosis infection. Appl. Microbiol. Biotechnol. 99: 10587–10595.

    Article  CAS  Google Scholar 

  20. Mustafa, A. S. (2002) Development of new vaccines and diagnostic reagents against tuberculosis. Mol. Immunol. 39: 113–119.

    Article  CAS  Google Scholar 

  21. Seenuvasan, M., C. G. Malar, S. Preethi, N. Balaji, J. Iyyappan, M. A. Kumar, and K. S. Kumar (2013) Fabrication, characterization and application of pectin degrading Fe3O4-SiO2 nanobiocatalyst. Mat. Sci. Eng. C 33: 2273–2279.

    Article  CAS  Google Scholar 

  22. Tafaghodi, M. and S. Rastegar (2010) Preparation and in vivo study of dry powder microspheres for nasal immunization. J. Drug Target. 18: 235–242.

    Article  CAS  Google Scholar 

  23. Tafaghodi, M., A. Khamesipour, and M. Jaafari (2010) Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental Autoclaved Leishmania major (ALM) and Quillajasaponins. Tropical Biomed. 27: 639–650.

    CAS  Google Scholar 

  24. Zelphati, O., C. Nguyen, M. Ferrari, J. Felgner, Y. Tsai, and P. Felgner (1998) Stable and monodisperse lipoplex formulations for gene delivery. Gene Therapy 5: 1272–1282.

    Article  CAS  Google Scholar 

  25. Epple, M. and A. Kovtun (2010) Functionalized calcium phosphate nanoparticles for biomedical application. Key Eng. Mat. 441: 299–305.

    Article  CAS  Google Scholar 

  26. Seenuvasan, M., K. S. Kumar, M. Kumar, J. Iyyappan, and J. R. G. Suganthi (2014) Response surface estimation and canonical quantification for the pectin degrading Fe3O4-SiO2 nanobiocatalyst fabrication. Internat. J. ChemTech. Res. 6: 3618–3627.

    CAS  Google Scholar 

  27. Koppad, S., G. D. Raj, V. Gopinath, J. J. Kirubaharan, A. Thangavelu, and V. Thiagarajan (2011) Calcium phosphate coupled Newcastle disease vaccine elicits humoral and cell mediated immune responses in chickens. Res. Veterinary Sci. 91: 384–390.

    Article  CAS  Google Scholar 

  28. He, Q., A. Mitchell, T. Morcol, and S. J. Bell (2002) Calcium phosphate nanoparticles induce mucosal immunity and protection against herpes simplex virus type 2. Clinic. Diagnostic Lab. Immunol. 9: 1021–1024.

    CAS  Google Scholar 

  29. He, Q., A. R. Mitchell, S. L. Johnson, C. Wagner-Bartak, T. Morcol, and S. J. Bell (2000) Calcium phosphate nanoparticle adjuvant. Clinic. Diagnostic Lab. Immunol. 7: 899–903.

    CAS  Google Scholar 

  30. Behera, T. and P. Swain (2011) Antigen adsorbed calcium phosphate nanoparticles stimulate both innate and adaptive immune response in fish, Labeo rohita H. Cell. Immunol. 271: 350–359.

    CAS  Google Scholar 

  31. Brandt, L., M. Elhay, I. Rosenkrands, E. B. Lindblad, and P. Andersen (2000) ESAT-6 Subunit Vaccination against Mycobacterium tuberculosis. Infect. Immun. 68: 791–795.

    Article  CAS  Google Scholar 

  32. Lindblad, E. B. (2004) Aluminium adjuvants-in retrospect and prospect. Vaccine 22: 3658–3668.

    Article  CAS  Google Scholar 

  33. Knuschke, T., V. Sokolova, O. Rotan, M. Wadwa, M. Tenbusch, W. Hansen, P. Staeheli, M. Epple, J. Buer, and A. M. Westendorf (2013) Immunization with biodegradable nanoparticles efficiently induces cellular immunity and protects against influenza virus infection. J. Immunol. 190: 6221–6229.

    Article  CAS  Google Scholar 

  34. Singh, M., M. Ugozzoli, J. Kazzaz, J. Chesko, E. Soenawan, D. Mannucci, F. Titta, M. Contorni, G. Volpini, and G. Del Guidice (2006) A preliminary evaluation of alternative adjuvants to alum using a range of established and new generation vaccine antigens. Vaccine 24: 1680–1686.

    Article  CAS  Google Scholar 

  35. Relyveld, E. and J. Chermann (1994) Humoral response in rabbits immunized with calcium phosphate adjuvanted HIV-1 gp160 antigen. Biomed. Pharmacotherapy 48: 79–83.

    Article  CAS  Google Scholar 

  36. Jones, S., C. Asokanathan, D. Kmiec, J. Irvine, R. Fleck, D. Xing, B. Moore, R. Parton, and J. Coote (2014) Protein coated microcrystals formulated with model antigens and modified with calcium phosphate exhibit enhanced phagocytosis and immunogenicity. Vaccine 32: 4234–4242.

    Article  CAS  Google Scholar 

  37. Berridge, M. J., P. Lipp, and M. D. Bootman (2000) The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1: 11–21.

    Article  CAS  Google Scholar 

  38. Marongiu, L., M. Donini, L. Toffali, E. Zenaro, and S. Dusi (2013) ESAT-6 and HspX improve the effectiveness of BCG to induce human dendritic cells-dependent Th1 and NK cells activation. PLoS One 8: e75684.

    Article  CAS  Google Scholar 

  39. Hanif, S., R. Al-Attiyah, and A. Mustafa (2010) Molecular cloning, expression, purification and immunological characterization of three low-molecular weight proteins encoded by genes in genomic regions of difference of mycobacterium Tuberculosis. Scand. J. Immunol. 71: 353–361.

    Article  CAS  Google Scholar 

  40. Manolova, V., A. Flace, M. Bauer, K. Schwarz, P. Saudan, and M. F. Bachmann (2008) Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 38: 1404–1413.

    Article  CAS  Google Scholar 

  41. Xiang, S. D., A. Scholzen, G. Minigo, C. David, V. Apostolopoulos, P. L. Mottram, and M. Plebanski (2006) Pathogen recognition and development of particulate vaccines: Does size matter? Method. 40: 1–9.

    Article  CAS  Google Scholar 

  42. Cuccu, B., G. Freer, A. Genovesi, C. Garzelli, and L. Rindi (2011) Identification of a human immunodominant T-cell epitope of mycobacterium tuberculosis antigen PPE44. BMC Microbiol. 11:167.

    Article  CAS  Google Scholar 

  43. Pitt, J. M., S. Blankley, H. McShane, and A. O’Garra (2013) Vaccination against tuberculosis: How can we better BCG? Microbial. Pathogen. 58: 2–16.

    Google Scholar 

  44. Sokolova, V., T. Knuschke, A. Kovtun, J. Buer, M. Epple, and A. M. Westendorf (2010) The use of calcium phosphate nanoparticles encapsulating Toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomat. 31: 5627–5633.

    Article  CAS  Google Scholar 

  45. Costello, A.D.L., A. Kumar, V. Narayan, M. Akbar, S. Ahmed, C. Abou-Zeid, G. Rook, J. Stanford, and C. Moreno (1992) Does antibody to mycobacterial antigens, including lipoarabinomannan, limit dissemination in childhood tuberculosis? Trans. Royal Soc. Tropical Med. Hygiene 86: 686–692.

    Article  CAS  Google Scholar 

  46. Achkar, J. M., J. Chan, and A. Casadevall (2015) B cells and antibodies in the defense against Mycobacterium tuberculosis infection. Immunolog. Rev. 264: 167–181.

    Article  CAS  Google Scholar 

  47. Torrado, E., J. J. Fountain, R. T. Robinson, C. A. Martino, J. E. Pearl, J. Rangel-Moreno, M. Tighe, R. Dunn, and A. M. Cooper (2013) Differential and site specific impact of B cells in the protective immune response to Mycobacterium tuberculosis in the mouse. PLoS One 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Fasihi-Ramandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amini, Y., Moradi, B., Tafaghodi, M. et al. TB trifusion antigen adsorbed on calcium phosphate nanoparticles stimulates strong cellular immunity in mice. Biotechnol Bioproc E 21, 653–658 (2016). https://doi.org/10.1007/s12257-016-0326-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0326-y

Keywords

Navigation