Skip to main content
Log in

In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bioimaging technology plays an important role in assessment of therapeutic response in cancer therapy. Here, we report a non-invasive monitoring system for measuring tumor growth by in vivo fluorescence imaging. Target cells for xenograft tumor induction were manipulated by cell-surface fluorescence labelling. Fluorescence was clearly detected in vitro and in vivo without affecting cytotoxicity. Anti-tumor efficacy was evaluated by directly measuring the fluorescence signal of a progressive tumor in a xenograft model. This non-invasive in vivo monitoring system can be used to assess the early response to antitumor therapeutics and may be a valuable tool to replace or complement traditional caliper-based methods for preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Massoud, T. F. and S. S. Gambhir (2007) Integrating noninvasive molecular imaging into molecular medicine: An evolving paradigm. Trends Mol. Med. 13: 183–191.

    Article  CAS  Google Scholar 

  2. Weissleder, R. and M. J. Pittet (2008) Imaging in the era of molecular oncology. Nature 452: 580–589.

    Article  CAS  Google Scholar 

  3. McVeigh, E. R. (2006) Emerging imaging techniques. Circ. Res. 98: 879–986.

    Article  CAS  Google Scholar 

  4. Leblond, F., S. C. Davis, P. A. Valdés, and B. W. Pogue (2010) Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J. Photochem. Photobiol. B. 98: 77–94.

    Article  CAS  Google Scholar 

  5. Kagadis, G. C., G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis (2010) In vivo small animal imaging: Current status and future prospects. Med. Phys. 37: 6421–6442.

    Article  Google Scholar 

  6. Dufort, S., L. Sancey, C. Wenk, V. Josserand, and J. L. Coll (2010) Optical small animal imaging in the drug discovery process. Biochim. Biophys. Acta. 1798: 2266–2273.

    Article  CAS  Google Scholar 

  7. Suggitt, M. and M. C. Bibby (2005) 50 years of preclinical anticancer drug screening: Empirical to target-driven approaches. Clin. Cancer Res. 11: 971–981.

    CAS  Google Scholar 

  8. Ardeshirpour, Y., V. Chernomordik, J. Capala, M. Hassan, R. Zielinsky, G. Griffiths, S. Achilefu, P. Smith, and A. Gandjbakhche (2011) Using in vivo fluorescence imaging in personalized cancer diagnostics and therapy, an image and treat paradigm. Technol. Cancer Res. Treat. 10: 549–560.

    Article  CAS  Google Scholar 

  9. O'Farrell, A. C., S. D. Shnyder, G. Marston, P. L. Coletta, and J. H. Gill (2013) Non-invasive molecular imaging for preclinical cancer therapeutic development. Br. J. Pharmacol. 169: 719–735.

    Article  Google Scholar 

  10. Shikanov, A., S. Shikanov, B. Vaisman, J. Golenser, and A. J. Domb (2008) Paclitaxel tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant. Int. J. Pharm. 358: 114–120.

    Article  CAS  Google Scholar 

  11. Elia, G. (2012) Biotinylation reagents for the study of cell surface proteins. Proteomics 8: 4012–4024.

    Article  Google Scholar 

  12. Ho, V. H., A. Barcza, R Chen, K. H. Müller, N. J. Darton, and N. K. Slater (2009) The precise control of cell labelling with streptavidin paramagnetic particles. Biomaterials 30: 6548–6555.

    Article  CAS  Google Scholar 

  13. Ho, V. H., K. H. Müller, N. J. Darton, D. C. Darling, F. Farzaneh, and N. K. Slater (2009) Simple magnetic cell patterning using streptavidin paramagnetic particles. Exp. Biol. Med. 234: 332–341.

    Article  CAS  Google Scholar 

  14. Holgate, S. T. (2010) Exposure, uptake, distribution and toxicity of nanomaterials in humans. J. Biomed. Nanotechnol. 6: 1–19.

    Article  CAS  Google Scholar 

  15. Howarth, M. and A. Y. Ting (2008) Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3: 534-345.

  16. Cai, Q. Y., H. Lee, E. J. Kim, H. Moon, K. Chang, J. Rho, and K. S. Hong (2012) Magnetic resonance imaging of superparamagnetic iron oxide-labelled macrophage infiltrates in acute-phase renal ischemia-reperfusion mouse model. Nanomed. 8: 365–373.

    CAS  Google Scholar 

  17. Aspord, C., D. Laurin, M. F. Janier, C. A. Mandon, C. Thivolet, C. Villiers, P. Mowat, A. M. Madec, O. Tillement, P. Perriat, C. Louis, F. Bérard, P. N. Marche, J. Plumas, and C. Billotey (2013) Paramagnetic nanoparticles to track and quantify in vivo immune human therapeutic cells. Nanoscale 5: 11409–11415.

    Article  CAS  Google Scholar 

  18. Weis, C., F. Blank, A. West, G. Black, R. C. Woodward, M. R. Carroll, A. Mainka, R. Kartmann, A. Brandl, H. Bruns, E. Hallam, J. Shaw, J. Murphy, W. Y. Teoh, K. E. Aifantis, R. Amal, M. House, T. S. Pierre, and B. Fabry (2013) Labelling of cancer cells with magnetic nanoparticles for magnetic resonance imaging. Magn. Reson. Med. 5: 11409–11415.

    Google Scholar 

  19. Simone, E. A., B. J. Zern, A. M. Chacko, J. L. Mikitsh, E. R. Blankemeyer, S. Muro, R. V. Stan, and V. R. Muzykantov (2012) Endothelial targeting of polymeric nanoparticles stably labelled with the PET imaging radioisotope iodine-124. Biomaterials 33: 5406–5413.

    Article  CAS  Google Scholar 

  20. Ranjbarvaziri, S., S. Kiani, A. Akhlaghi, A. Vosough, H. Baharvand, and N. Aghdami (2011) Quantum dot labelling using positive charged peptides in human hematopoetic and mesenchymal stem cells. Biomaterials 32: 5195–5205.

    Article  CAS  Google Scholar 

  21. Bhirde, A., J. Xie, M. Swierczewska, and X. Chen (2011) Nanoparticles for cell labelling. Nanoscale 3: 142–153.

    Article  CAS  Google Scholar 

  22. Kerbel, R. S. (2003) Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: Better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2: S134–139.

    CAS  Google Scholar 

  23. Gould, S. J. and S. Subramani (1988) Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175: 5–13.

    Article  CAS  Google Scholar 

  24. Jurczok, A., P. Fornara, and A. Söling (2008) Bioluminescence imaging to monitor bladder cancer cell adhesion in vivo: A new approach to optimize a syngeneic, orthotopic, murine bladder cancer model. BJU Int. 101: 120–124.

    Google Scholar 

  25. Kang, S. H., H. T. Cho, S. Devi, Z. Zhang, D. Escuin, Z. Liang, H. Mao, D. J. Brat, J. J. Olson, J. W. Simons, T. M. Lavallee, P. Giannakakou, E. G. Van Meir, and H. Shim (2006) Antitumor effect of 2-methoxyestradiol in a rat orthotopic brain tumor model. Cancer Res. 66: 11991–11997.

    Article  CAS  Google Scholar 

  26. Luker, K. E. and G. D. Luker (2008) Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antiviral Res. 78: 179–187.

    Article  CAS  Google Scholar 

  27. Liu, F., X. Cao, S. Liu, B. Zhang, W. He, J. Song, Z. Dai, B. Zhang, J. Luo, Y. Li, B. Shan, and J. Bai (2013) Monitoring of tumor response to cisplatin with simultaneous fluorescence and positron emission tomography: A feasibility study. J. Biophotonics 7: 889–896.

    Article  Google Scholar 

  28. Sutton, E. J., T. D. Henning, B. J. Pichler, C. Bremer, and H. E. Daldrup-Link (2008) Cell tracking with optical imaging. Eur. Radiol. 18: 2021–2032.

    Article  Google Scholar 

  29. Riedel, S. S., A. Mottok, C. Brede, C. A. Bäuerlein, A. L. Jordán Garrote, M. Ritz, K. Mattenheimer, A. Rosenwald, H. Einsele, B. Bogen, and A. Beilhack (2012) Non-invasive imaging provides spatiotemporal information on disease progression and response to therapy in a murine model of multiple myeloma. PLoS One 7: e52398.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwan Soo Hong.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, EJ., Lee, H., Yeom, A. et al. In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model. Biotechnol Bioproc E 21, 567–572 (2016). https://doi.org/10.1007/s12257-016-0251-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0251-0

Keywords