Abstract
Bioimaging technology plays an important role in assessment of therapeutic response in cancer therapy. Here, we report a non-invasive monitoring system for measuring tumor growth by in vivo fluorescence imaging. Target cells for xenograft tumor induction were manipulated by cell-surface fluorescence labelling. Fluorescence was clearly detected in vitro and in vivo without affecting cytotoxicity. Anti-tumor efficacy was evaluated by directly measuring the fluorescence signal of a progressive tumor in a xenograft model. This non-invasive in vivo monitoring system can be used to assess the early response to antitumor therapeutics and may be a valuable tool to replace or complement traditional caliper-based methods for preclinical studies.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Massoud, T. F. and S. S. Gambhir (2007) Integrating noninvasive molecular imaging into molecular medicine: An evolving paradigm. Trends Mol. Med. 13: 183–191.
Weissleder, R. and M. J. Pittet (2008) Imaging in the era of molecular oncology. Nature 452: 580–589.
McVeigh, E. R. (2006) Emerging imaging techniques. Circ. Res. 98: 879–986.
Leblond, F., S. C. Davis, P. A. Valdés, and B. W. Pogue (2010) Pre-clinical whole-body fluorescence imaging: Review of instruments, methods and applications. J. Photochem. Photobiol. B. 98: 77–94.
Kagadis, G. C., G. Loudos, K. Katsanos, S. G. Langer, and G. C. Nikiforidis (2010) In vivo small animal imaging: Current status and future prospects. Med. Phys. 37: 6421–6442.
Dufort, S., L. Sancey, C. Wenk, V. Josserand, and J. L. Coll (2010) Optical small animal imaging in the drug discovery process. Biochim. Biophys. Acta. 1798: 2266–2273.
Suggitt, M. and M. C. Bibby (2005) 50 years of preclinical anticancer drug screening: Empirical to target-driven approaches. Clin. Cancer Res. 11: 971–981.
Ardeshirpour, Y., V. Chernomordik, J. Capala, M. Hassan, R. Zielinsky, G. Griffiths, S. Achilefu, P. Smith, and A. Gandjbakhche (2011) Using in vivo fluorescence imaging in personalized cancer diagnostics and therapy, an image and treat paradigm. Technol. Cancer Res. Treat. 10: 549–560.
O'Farrell, A. C., S. D. Shnyder, G. Marston, P. L. Coletta, and J. H. Gill (2013) Non-invasive molecular imaging for preclinical cancer therapeutic development. Br. J. Pharmacol. 169: 719–735.
Shikanov, A., S. Shikanov, B. Vaisman, J. Golenser, and A. J. Domb (2008) Paclitaxel tumor biodistribution and efficacy after intratumoral injection of a biodegradable extended release implant. Int. J. Pharm. 358: 114–120.
Elia, G. (2012) Biotinylation reagents for the study of cell surface proteins. Proteomics 8: 4012–4024.
Ho, V. H., A. Barcza, R Chen, K. H. Müller, N. J. Darton, and N. K. Slater (2009) The precise control of cell labelling with streptavidin paramagnetic particles. Biomaterials 30: 6548–6555.
Ho, V. H., K. H. Müller, N. J. Darton, D. C. Darling, F. Farzaneh, and N. K. Slater (2009) Simple magnetic cell patterning using streptavidin paramagnetic particles. Exp. Biol. Med. 234: 332–341.
Holgate, S. T. (2010) Exposure, uptake, distribution and toxicity of nanomaterials in humans. J. Biomed. Nanotechnol. 6: 1–19.
Howarth, M. and A. Y. Ting (2008) Imaging proteins in live mammalian cells with biotin ligase and monovalent streptavidin. Nat. Protoc. 3: 534-345.
Cai, Q. Y., H. Lee, E. J. Kim, H. Moon, K. Chang, J. Rho, and K. S. Hong (2012) Magnetic resonance imaging of superparamagnetic iron oxide-labelled macrophage infiltrates in acute-phase renal ischemia-reperfusion mouse model. Nanomed. 8: 365–373.
Aspord, C., D. Laurin, M. F. Janier, C. A. Mandon, C. Thivolet, C. Villiers, P. Mowat, A. M. Madec, O. Tillement, P. Perriat, C. Louis, F. Bérard, P. N. Marche, J. Plumas, and C. Billotey (2013) Paramagnetic nanoparticles to track and quantify in vivo immune human therapeutic cells. Nanoscale 5: 11409–11415.
Weis, C., F. Blank, A. West, G. Black, R. C. Woodward, M. R. Carroll, A. Mainka, R. Kartmann, A. Brandl, H. Bruns, E. Hallam, J. Shaw, J. Murphy, W. Y. Teoh, K. E. Aifantis, R. Amal, M. House, T. S. Pierre, and B. Fabry (2013) Labelling of cancer cells with magnetic nanoparticles for magnetic resonance imaging. Magn. Reson. Med. 5: 11409–11415.
Simone, E. A., B. J. Zern, A. M. Chacko, J. L. Mikitsh, E. R. Blankemeyer, S. Muro, R. V. Stan, and V. R. Muzykantov (2012) Endothelial targeting of polymeric nanoparticles stably labelled with the PET imaging radioisotope iodine-124. Biomaterials 33: 5406–5413.
Ranjbarvaziri, S., S. Kiani, A. Akhlaghi, A. Vosough, H. Baharvand, and N. Aghdami (2011) Quantum dot labelling using positive charged peptides in human hematopoetic and mesenchymal stem cells. Biomaterials 32: 5195–5205.
Bhirde, A., J. Xie, M. Swierczewska, and X. Chen (2011) Nanoparticles for cell labelling. Nanoscale 3: 142–153.
Kerbel, R. S. (2003) Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: Better than commonly perceived-but they can be improved. Cancer Biol. Ther. 2: S134–139.
Gould, S. J. and S. Subramani (1988) Firefly luciferase as a tool in molecular and cell biology. Anal. Biochem. 175: 5–13.
Jurczok, A., P. Fornara, and A. Söling (2008) Bioluminescence imaging to monitor bladder cancer cell adhesion in vivo: A new approach to optimize a syngeneic, orthotopic, murine bladder cancer model. BJU Int. 101: 120–124.
Kang, S. H., H. T. Cho, S. Devi, Z. Zhang, D. Escuin, Z. Liang, H. Mao, D. J. Brat, J. J. Olson, J. W. Simons, T. M. Lavallee, P. Giannakakou, E. G. Van Meir, and H. Shim (2006) Antitumor effect of 2-methoxyestradiol in a rat orthotopic brain tumor model. Cancer Res. 66: 11991–11997.
Luker, K. E. and G. D. Luker (2008) Applications of bioluminescence imaging to antiviral research and therapy: multiple luciferase enzymes and quantitation. Antiviral Res. 78: 179–187.
Liu, F., X. Cao, S. Liu, B. Zhang, W. He, J. Song, Z. Dai, B. Zhang, J. Luo, Y. Li, B. Shan, and J. Bai (2013) Monitoring of tumor response to cisplatin with simultaneous fluorescence and positron emission tomography: A feasibility study. J. Biophotonics 7: 889–896.
Sutton, E. J., T. D. Henning, B. J. Pichler, C. Bremer, and H. E. Daldrup-Link (2008) Cell tracking with optical imaging. Eur. Radiol. 18: 2021–2032.
Riedel, S. S., A. Mottok, C. Brede, C. A. Bäuerlein, A. L. Jordán Garrote, M. Ritz, K. Mattenheimer, A. Rosenwald, H. Einsele, B. Bogen, and A. Beilhack (2012) Non-invasive imaging provides spatiotemporal information on disease progression and response to therapy in a murine model of multiple myeloma. PLoS One 7: e52398.
Author information
Authors and Affiliations
Corresponding author
Additional information
These authors equally contributed to this work.
Rights and permissions
About this article
Cite this article
Kim, EJ., Lee, H., Yeom, A. et al. In vivo fluorescence imaging to assess early therapeutic response to tumor progression in a xenograft cancer model. Biotechnol Bioproc E 21, 567–572 (2016). https://doi.org/10.1007/s12257-016-0251-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12257-016-0251-0

