Skip to main content
Log in

Prohibitin deficiency causes opposing lipid metabolism between 3T3-L1 adipocytes and Clone 9 hepatocytes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Prohibitin (PHB) is a highly conserved protein in eukaryotic cells that are present in multiple cellular compartments and has potential roles as a tumor suppressor, an anti-proliferative protein, a regulator of cell-cycle progression and in apoptosis. In the present study, we generated PHB-deficient 3T3-L1 adipocytes and Clone 9 (C9) hepatocytes by oligonucleotide siRNA and investigated whether PHB affect lipid metabolism. It was revealed that PHB deficiency caused opposing lipid metabolism between the two cell models. PHB deficiency increased expression of adipogenic, lipogenic, and other lipid metabolic proteins in 3T3-L1 adipocytes, whereas significantly decreased the levels of those proteins in C9 cells. Collectively, PHB deficiency promoted lipid metabolism in 3T3-L1 adipocytes while it aggravated lipid metabolism in C9 hepatocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra, S., L. C. Murphy, and L. J. Murphy (2006) The Prohibitins: Emerging roles in diverse functions. J. Cell. Mol. Med. 10: 353–363.

    Article  CAS  Google Scholar 

  2. Wang, S. and D. V. Faller (2008) Roles of prohibitin in growth control and tumor suppression in human cancers. Trans. Oncogenomics. 3: 23–37.

    CAS  Google Scholar 

  3. Mishra S., L. C. Murphy, B. L. Nyomba, and L. J. Murphy (2005) Prohibitin: A potential target for new therapeutics. Trends Mol. Med. 11: 192–197.

    Article  CAS  Google Scholar 

  4. Jiang P., Y. Xiang, Y. J. Wang, S. M. Li, Y. Wang, H. R. Hua, G. Y. Yu, Y. Zhang, W. H. Lee, and Y. Zhang (2013) Differential expression and subcellular localization of Prohibitin 1 are related to tumorigenesis and progression of non-small cell lung cancer. Int. J. Clin. Exp. Pathol. 15: 2092–2101.

    Google Scholar 

  5. Ko K. S., M. L. Tomasi, A. Iglesias-Ara, B. A. French, S. W. French, K. Ramani, J. J. Lozano, P. Oh, L. He, B. L. Stiles, T. W. Li, H. Yang, M. L. Martínez-Chantar, J. M. Mato, and S. C. Lu (2010) Liver-specific deletion of prohibitin 1 results in spontaneous liver injury, fibrosis, and hepatocellular carcinoma in mice. Hepatol. 52: 2096–2108.

    Article  CAS  Google Scholar 

  6. Sánchez-Quiles, V., V. Segura, E. Bigaud, B. He, B. W. O’Malley, E. Santamaría, J. Prieto, and F. J. Corrales (2012) Prohibitin-1 deficiency promotes inflammation and increases sensitivity to liver injury. J. Proteomics 75: 5783–5792.

    Article  Google Scholar 

  7. Artal-Sanz, M. and N. Tavernarakis (2009) Prohibitin couples diapause signalling to mitochondrial metabolism during ageing in C. elegans. Nature 461: 793–797.

    Article  CAS  Google Scholar 

  8. Artal-Sanz, M. and N. Tavernarakis (2010) Opposing function of mitochondrial prohibitin in aging. Aging 2: 1004–1011.

    Article  CAS  Google Scholar 

  9. Gamble, S. C., D. Chotai, M. Odontiadis, D. A. Dart, G. N. Brooke, S. M. Powell, V. Reebye, A. Varela-Carver, Y. Kawano, J. Waxman, and C. L. Bevan (2007). Prohibitin, a protein downregulated by androgens, represses androgen receptor activity. Oncogene 26: 1757–1768.

    Article  CAS  Google Scholar 

  10. Dai, Y., D. Ngo, J. Jacob, L. W. Forman, and D. V. Faller (2008). Prohibitin and the SWI/SNF ATPase subunit BRG1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis 29: 1725–1733.

    Article  CAS  Google Scholar 

  11. He, B., Q. Feng, A. Mukherjee, D. M. Lonard, F. J. DeMayo, B. S. Katzenellenbogen, J. P. Lydon, and B. W. O’Malley (2008) A repressive role for prohibitin in estrogen signaling. Mol. Endocrinol. 22: 344–360.

    Article  CAS  Google Scholar 

  12. Dart, D. A., B. Spencer-Dene, S. C. Gamble, J. Waxman, and C. L. Bevan (2009). Manipulating prohibitin levels provides evidence for an in vivo role in androgen regulation of prostate tumours. Endocr. Relat. Cancer 16: 1157–1169.

    Article  CAS  Google Scholar 

  13. Sánchez-Quiles, V., E. Santamaría, V. Segura, L. Sesma, J. Prieto, and F. J. Corrales (2010) Prohibitin deficiency blocks proliferation and induces apoptosis in human hepatoma cells: molecular mechanisms and functional implications. Proteomics 10: 1609–1620.

    Article  Google Scholar 

  14. Liu, D., Y. Lin, T. Kang, B. Huang, W. Xu, M. Garcia-Barrio, M. Olatinwo, R. Matthews, Y. E. Chen, and W. E. Thompson (2012) Mitochondrial dysfunction and adipogenic reduction by prohibitin silencing in 3T3-L1 cells. PLoS One 7: e34315.

    Article  CAS  Google Scholar 

  15. Ande, S. R., Z. Xu, Y. Gu, and S. Mishra (2012) Prohibitin has an important role in adipocyte differentiation. Int. J. Obes (Lond). 36: 1236–1244.

    Article  CAS  Google Scholar 

  16. Chaudhari, H. N. and J. W. Yun (2014) Gender-dimorphic regulation of liver proteins in Streptozotocin-induced diabetic rats. Biotechnol. Bioproc. Eng. 19: 93–107.

    Article  CAS  Google Scholar 

  17. Aseer, K. R., S. W. Kim, D. G. Lee, and J. W. Yun (2014). Gender-dimorphic regulation of muscular proteins in response to high fat diet and sex steroid hormones. Biotechnol. Bioproc. Eng. 19: 93–107.

    Article  Google Scholar 

  18. Chaudhari, H. N., S. W. Kim, and J. W. Yun (2014). Genderdimorphic regulation of antioxidant proteins in response to high-fat diet and sex steroid hormones in rats. Free Radic. Res. 48: 587–598.

    Article  CAS  Google Scholar 

  19. Theiss, A. L. and S. V. Sitaraman (2011). The role and therapeutic potential of prohibitin in disease. Biochim. Biophys. Acta 1813: 1137–1143.

    Article  CAS  Google Scholar 

  20. Kahn, B. B., T. Alquier, D. Carling, and D. G. Hardie (2005) AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1: 15–25.

    Article  CAS  Google Scholar 

  21. Koves, T. R., J. R. Ussher, R. C. Noland, D. Slentz, M. Mosedale, O. Ilkayeva, J. Bain, R. Stevens, J. R. Dyck, C. B. Newgard, G. D. Lopaschuk, and D. M. Muoio (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 7: 45–56.

    Article  CAS  Google Scholar 

  22. Eberlé, D., B. Hegarty, P. Bossard, P. Ferré, and F. Foufelle (2004) SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie 86: 839–848.

    Article  Google Scholar 

  23. Kasashima, K., M. Sumitani, M. Satoh, and H. Endo (2008) Human prohibitin 1 maintains the organization and stability of the mitochondrial nucleoids. Exp. Cell Res. 314: 988–996.

    Article  CAS  Google Scholar 

  24. Knudsen, J., T. B. Neergaard, B. Gaigg, M. V. Jensen, and J. K. Hansen (2000) Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling. J. Nutr. 130: 294S–298S.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.W., Yun, J.W. Prohibitin deficiency causes opposing lipid metabolism between 3T3-L1 adipocytes and Clone 9 hepatocytes. Biotechnol Bioproc E 21, 294–298 (2016). https://doi.org/10.1007/s12257-016-0249-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0249-7

Keywords

Navigation