Biotechnology and Bioprocess Engineering

, Volume 21, Issue 5, pp 634–640 | Cite as

Isomerase activity of Candida rugosa lipase in the optimized conversion of racemic ibuprofen to (S)-ibuprofen

  • Saideh S. Mortazavi
  • David Chavez-Flores
  • James M. Salvador
Research Paper


The Candida rugosa lipase catalyzed Dynamic Kinetic Resolution of racemic ibuprofen methyl ester produced (S)-ibuprofen in over 90% yield within 72 h at pH 7.6. The best concentration of various buffers for these reactions ranged from 0.2 to 0.5 M. The commercial lipase was found to be acidic altering the final pH of the reaction mixtures. Dimethylformamide co-solvent maintained the reaction pH better than dimethylsulfoxide. Lower concentrations of ibuprofen methyl ester and higher stirring rates led to faster conversions. The minimal amount of lipase needed was 20 mg/mL buffer. Reaction of (R)-ibuprofen methyl ester under the optimized conditions excluding the lipase led to no racemization, indicating that the conversion of (R)-ibuprofen methyl ester to (S)-ibuprofen is catalyzed by the enzyme, thus, indicating Candida rugosa lipase possess Isomerase activity.


dynamic kinetic resolution Candida rugosa lipase ibuprofen methyl ester (S)-Ibuprofen racemization dimethylformamide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Persson, B. A., A. L. Larsson, M. Le Ray, and J. Bäckvall (1999) Ruthenium-and enzyme-catalyzed dynamic kinetic resolution of secondary alcohols. J. Am. Chem. Soc. 121: 1645–1650.CrossRefGoogle Scholar
  2. 2.
    Do, Y., I. Hwang, M. Kim, and J. Park (2010) Photoactivated racemization catalyst for dynamic kinetic resolution of secondary alcohols. J. Org. Chem. 75: 5740–5742.CrossRefGoogle Scholar
  3. 3.
    Akai, S., R. Hanada, N. Fujiwara, Y. Kita, and M. Egi (2010) One-pot synthesis of optically active allyl esters via Lipasevanadium combo catalysis. Org. Lett. 12: 4900–4903.CrossRefGoogle Scholar
  4. 4.
    Deska, J., C. del Pozo Ochoa, and J. Bäckvall (2010) Chemoenzymatic dynamic kinetic resolution of axially chiral allenes. Chem. Eur. J. 16: 4447–4451.CrossRefGoogle Scholar
  5. 5.
    Kim, M., W. Kim, K. Han, Y. K. Choi, and J. Park (2007) Dynamic kinetic resolution of primary amines with a recyclable Pd nanocatalyst for racemization. Org. Lett. 9: 1157–1159.CrossRefGoogle Scholar
  6. 6.
    Stirling, M., J. Blacker, and M. I. Page (2007) Chemoenzymatic dynamic kinetic resolution of secondary amines. Tetrahedron Lett. 48: 1247–1250.CrossRefGoogle Scholar
  7. 7.
    Fransson, A. L., L. Borén, O. Pàmies, and J. Bäckvall (2005) Kinetic resolution and chemoenzymatic dynamic kinetic resolution of functionalized γ-hydroxy amides. J. Org. Chem. 70: 2582–2587.CrossRefGoogle Scholar
  8. 8.
    Baxter, S., S. Royer, G. Grogan, F. Brown, K. E. Holt-Tiffin, I. N. Taylor, I. G. Fotheringham, and D. J. Campopiano (2012) An improved racemase/acylase biotransformation for the preparation of enantiomerically pure amino acids. J. Am. Chem. Soc. 134: 19310–19313.CrossRefGoogle Scholar
  9. 9.
    Engström, K., M. Shakeri, and J. Bäckvall (2011) Dynamic kinetic resolution of ß-amino esters by a heterogeneous system of a palladium nanocatalyst and candida antarctica lipase A. Eur. J. Org. Chem. 10: 1827–1830.CrossRefGoogle Scholar
  10. 10.
    Rodríguez-Docampo, Z., C. Quigley, S. Tallon, and S. J. Connon (2012) The dynamic kinetic resolution of azlactones with thiol nucleophiles catalyzed by arylated, deoxygenated cinchona alkaloids. J. Org. Chem. 77: 2407–2414.CrossRefGoogle Scholar
  11. 11.
    Rodríguez, C., G. de Gonzalo, A. Rioz-Martínez, D. E. T. Pazmino, M. W. Fraaije, and V. Gotor (2010) BVMO-catalysed dynamic kinetic resolution of racemic benzyl ketones in the presence of anion exchange resins. Org. Bimol. Chem. 8: 1121–1125.CrossRefGoogle Scholar
  12. 12.
    Pamies, O. and J. Baeckvall (2002) Efficient lipase-catalyzed kinetic resolution and dynamic kinetic resolution of ß-hydroxy nitriles. correction of absolute configuration and transformation to chiral ß-hydroxy acids and γ-amino alcohols. Adv. Synth. Catal. 344: 947–952.Google Scholar
  13. 13.
    Kiełbasiński, P., M. Rachwalski, M. Miko ajczyk, M. A. Moelands, B. Zwanenburg, and F. P. Rutjes (2005) Lipase-promoted dynamic kinetic resolution of racemic ß-hydroxyalkyl sulfones. Tetrahedron: Asymm. 16: 2157–2160.CrossRefGoogle Scholar
  14. 14.
    Shiina, I., K. Ono, and K. Nakata (2012) Non-enzymatic dynamic kinetic resolution of racemic a-arylalkanoic acids: An advanced asymmetric synthesis of chiral nonsteroidal antiinflammatory drugs (NSAIDs). Catal. Sci. Tech. 2: 2200–2205.CrossRefGoogle Scholar
  15. 15.
    Ng, I. and S. Tsai (2006) Characterization and application of Carica papaya lipase to the dynamic kinetic resolution of (R,S)-naproxen thioester. J. Chin. Inst. Chem. Eng. 37: 375–382.Google Scholar
  16. 16.
    Yuchun, X., L. Huizhou, and C. Jiayong (2000) Kinetics of base catalyzed racemization of ibuprofen enantiomers. Int. J. Pharm. 196: 21–26.CrossRefGoogle Scholar
  17. 17.
    Liu, Y., F. Wang, and T. Tan (2009) Cyclic resolution of racemic ibuprofen via coupled efficient lipase and acid/base catalysis. Chirality 21: 349–353.CrossRefGoogle Scholar
  18. 18.
    Xin, J., Y. Zhao, Y. Shi, C. Xia, and S. Li (2005) Lipase-catalyzed naproxen methyl ester hydrolysis in water-saturated ionic liquid: significantly enhanced enantioselectivity and stability. J. Microbiol. Biotechnol. 21: 193–199.CrossRefGoogle Scholar
  19. 19.
    Fazlena, H., A. Kamaruddin, and M. Zulkali (2006) Dynamic kinetic resolution: alternative approach in optimizing S-ibuprofen production. Bioproc. Biosyst. Eng. 28: 227–233.CrossRefGoogle Scholar
  20. 20.
    Chavez-Flores, D. and J. M. Salvador (2012) Facile conversion of racemic ibuprofen to (S)-ibuprofen. Tetrahedron: Asym. 23:237–239.CrossRefGoogle Scholar
  21. 21.
    Lin, H. and S. Tsai (2003) Dynamic kinetic resolution of (R,S)-naproxen 2, 2, 2-trifluoroethyl ester via lipase-catalyzed hydrolysis in micro-aqueous isooctane. J. Mol. Catal. B: Enz. 24-25: 111–120.CrossRefGoogle Scholar
  22. 22.
    Xin, J., S. Li, Y. Xu, J. Chui, and C. Xia (2001) Dynamic enzymatic resolution of naproxen methyl ester in a membrane bioreactor. J. Chem. Technol. Biotechnol. 76: 579–585.CrossRefGoogle Scholar
  23. 23.
    Chang, C., S. Tsai, and J. Kuo (1999) Lipase-catalyzed dynamic resolution of naproxen 2, 2, 2-trifluoroethyl thioester by hydrolysis in isooctane. Biotechnol. Bioeng. 64: 120–126.CrossRefGoogle Scholar
  24. 24.
    Chen, C., Y. Cheng, and S. Tsai (2002) Lipase-catalyzed dynamic kinetic resolution of (R, S)-fenoprofen thioester in isooctane. J. Chem. Technol. Biotechnol. 77:699–705.CrossRefGoogle Scholar
  25. 25.
    Lin, C. and S. Tsai (2000) Dynamic kinetic resolution of suprofen thioester via coupled trioctylamine and lipase catalysis. Biotechnol. Bioeng. 69: 31–38.CrossRefGoogle Scholar
  26. 26.
    Ong, A. L., A. H. Kamaruddin, and S. Bhatia (2005) Current technologies for the production of (S)-ketoprofen: Process perspective. Process Biochem. 40:3526–3535.CrossRefGoogle Scholar
  27. 27.
    Chavez-Flores, D. and J. M. Salvador (2009) Commercially viable resolution of ibuprofen. Biotechnol. J. 4: 1222–1224.CrossRefGoogle Scholar
  28. 28.
    Yamaji, T., T. Saito, K. Hayamizu, M. Yanagisawa, and O. Yamamoto Spectral Database for Organic Compounds SDBS. Http://Sdbs.Db.Aist.Go.Jp. http://sdbs.db.aist.go.jpGoogle Scholar
  29. 29.
    Koul, S., J. L. Koul, B. Singh, M. Kapoor, R. Parshad, K. S. Manhas, S. C. Taneja, and G. N. Qazi (2005) Trichosporon beigelli esterase (TBE): A versatile esterase for the resolution of economically important racemates. Tetrahedron: Asymm. 16: 2575–2591.CrossRefGoogle Scholar
  30. 30.
    Takaç, S. and D. Mutlu (2007) A parametric study on biphasic medium conditions for the enantioselective production of naproxen by Candida rugosa lipase. Appl. Biochem. Biotechnol. 141: 15–26.CrossRefGoogle Scholar
  31. 31.
    Mathews, A. (1909) The spontaneous oxidation of the sugars. J. Biol. Chem. 6: 3–20.Google Scholar
  32. 32.
    Hardegger, E., K. Kreis, and H. E. Khadem (1952) Oxidation of several mono-and disaccharides with alkali and oxygen. Helv. Chim. Acta 35: 618–623.CrossRefGoogle Scholar
  33. 33.
    Good, N. E., G. D. Winget, W. Winter, T. N. Connolly, S. Izawa, and R. M. Singh (1966) Hydrogen ion buffers for biological research. Biochem. 5: 467–477.CrossRefGoogle Scholar
  34. 34.
    Doonan, S. (2004) Making and changing buffers. Methods Mol. Biol. 244: 91–99.Google Scholar
  35. 35.
    Steenkamp, L. and D. Brady (2008) Optimisation of stabilised Carboxylesterase NP for enantioselective hydrolysis of naproxen methyl ester. Proc. Biochem. 43: 1419–1426.CrossRefGoogle Scholar
  36. 36.
    Liu, X., J. Xu, J. Pan, and J. Zhao (2010) Efficient production of (S)-Naproxen with (R)-substrate recycling using an overexpressed carboxylesterase BsE-NP01. Appl. Biochem. Biotechnol. 162: 1574–1584.CrossRefGoogle Scholar
  37. 37.
    Quax, W. and C. Broekhuizen (1994) Development of a newBacillus carboxyl esterase for use in the resolution of chiral drugs. Appl. Microbiol. Biotechnol. 41: 425–431.Google Scholar
  38. 38.
    Gonawan, F. N., L. S. Yon, A. H. Kamaruddin, and M. H. Uzir (2012) Effect of co-solvent addition on the reaction kinetics of the lipase-catalyzed resolution of ibuprofen ester. J. Chem. Technol. Biotechnol. 88: 672–679.CrossRefGoogle Scholar
  39. 39.
    Lee, W. H., K. Kim, M. G. Kim, and S. B. Lee (1995) Enzymatic resolution of racemic ibuprofen esters: Effects of organic cosolvents and temperature. J. Ferment. Bioeng. 80: 613–615.CrossRefGoogle Scholar
  40. 40.
    Qu, X., A. Allan, G. Chui, T. J. Hutchings, P. Jiao, L. Johnson, W. Y. Leung, P. K. Li, G. R. Steel, and A. S. Thompson (2013) Hydrolysis of ibuprofenoyl-CoA and other 2-APA-CoA esters by human acyl-CoA thioesterases-1 and-2 and their possible role in the chiral inversion of profens. Biochem. Pharmacol. 86: 1621–1625.CrossRefGoogle Scholar
  41. 41.
    Woodman, T. J., P. J. Wood, A. S. Thompson, T. J. Hutchings, G. R. Steel, P. Jiao, M. D. Threadgill, and M. D. Lloyd (2011) Chiral inversion of 2-arylpropionyl-CoA esters by human a-methylacyl-CoA racemase 1A (P504S)-a potential mechanism for the anti-cancer effects of ibuprofen. Chem. Commun. 47: 7332–7334.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Saideh S. Mortazavi
    • 1
  • David Chavez-Flores
    • 2
  • James M. Salvador
    • 1
  1. 1.Department of ChemistryUniversity of Texas at El PasoEl PasoUSA
  2. 2.Facultad de Ciencias QuímicasUniversidad Autónoma de ChihuahuaChihuahuaMexico

Personalised recommendations