Perspectives on the nanotechnology applications of for the analytical detection of heavy metals in marine organisms

Abstract

Heavy metals accumulate in organisms throughout the food chain and eventually end up in humans. Heavy metals can cause severe diseases and may even result in death. Therefore, concerns about heavy metal accumulation in marine organisms have increased in recent years. To determine solutions to this concern, the sensitive detection of heavy metals in marine organisms is required. Current detection techniques for heavy metals present in marine organisms have several limitations, such as complicated pre-treatment steps and a lengthy analysis time. Thus, there are increasing needs for the newly developed methods of detecting heavy metals in marine organisms. In this review, we focus here on (1) the current detection techniques available and (2) the application of newly emergent nanotechnology for the sensitive detection of heavy metals in marine organisms.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Qin, F., G. Li, H. Xiao, Z. Lu, H. Sun, and R. Chen (2012) Largescale synthesis of bismuth hollow nanospheres for highly efficient Cr(VI) removal. Dalton Transact. 41: 11263–11266.

    CAS  Article  Google Scholar 

  2. 2.

    Wongsasuluk, P., S. Chotpantarat, W. Siriwong, and M. Robson (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ. Geochem. Health 36: 169–182.

    CAS  Article  Google Scholar 

  3. 3.

    Williams, T. J., and R. Cavicchioli (2014) Marine metaproteomics: Deciphering the microbial metabolic food web. Trends Microbiol. 22: 248–260.

    CAS  Article  Google Scholar 

  4. 4.

    Akoto, O., F. B. Eshun, G. Darko, and E. Adei (2014) Concentrations and health risk assessments of heavy metals in fish from the Fosu Lagoon. Int. J. Environ Res. 8: 403–410.

    Google Scholar 

  5. 5.

    Abida, H., S. Ruchaud, L. Rios, A. Humeau, I. Probert, C. De Vargas, S. Bach, and C. Bowler (2013) Bioprospecting marine plankton. Marine Drugs 11: 4594–4611.

    CAS  Article  Google Scholar 

  6. 6.

    Abdul Wahab, A. S., S. N. Syed Ismail, S. M. Praveena, and S. Awang (2014) Heavy metals uptake of water mimosa (Neptunia oleracea) and its safety for human consumption. Iran J. Public Health. 43: 103–111.

    Google Scholar 

  7. 7.

    Woolston, C. (2014) Ocean biology: Marine dreams. Nature 516: 277–279.

    Article  Google Scholar 

  8. 8.

    Kim, S. K. (2014) Marine cosmeceuticals. J. Cosmetic Dermatol. 13: 56–67.

    Article  Google Scholar 

  9. 9.

    Bloch, J. F. and E. Tardieu-Guigues (2014) Marine biotechnologies and synthetic biology, new issues for a fair and equitable profit-sharing commercial use. Mar. Genom. 17: 79–83.

    Article  Google Scholar 

  10. 10.

    Martins, A., H. Vieira, H. Gaspar, and S. Santos (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine Drugs 12: 1066–1101.

    Article  Google Scholar 

  11. 11.

    Gerwick, W. H. and B. S. Moore (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 19: 85–98.

    CAS  Article  Google Scholar 

  12. 12.

    Fusetani, N. (2010) Biotechnological potential of marine natural products. Pure Appl. Chem. 82: 17–26.

    CAS  Article  Google Scholar 

  13. 13.

    Jang, Y. P. (2009) Marine organisms have been an important resource for the drug discovery industry. Arch. Pharmacal. Res. 32: 1483–1484.

    Article  Google Scholar 

  14. 14.

    Jones, G. (2013) Marine biology: Coral animals combat stress with sulphur. Nature 502: 634–635.

    CAS  Article  Google Scholar 

  15. 15.

    Heymans, J. J., M. Coll, S. Libralato, L. Morissette, and V. Christensen (2014) Global patterns in ecological indicators of marine food webs: A modelling approach. PloS one. 9: e95845.

    Article  Google Scholar 

  16. 16.

    Ruiz-Guzman, J. A., J. L. Marrugo-Negrete, and S. Diez (2014) Human exposure to mercury through fish consumption: Risk assessment of riverside inhabitants of the urra reservoir, Colombia. Hum. Ecol. Risk Assess. 20: 1151–1163.

    CAS  Article  Google Scholar 

  17. 17.

    Vinodhini, R. and M. Narayanan (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus earpio (Common carp). Int. J. Environ. Sci. Te. 5: 179–182.

    CAS  Article  Google Scholar 

  18. 18.

    Okyere, H., R. B. Voegborlo, and S. E. Agorku (2015) Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine. Food Chem. 179: 331–335.

    CAS  Article  Google Scholar 

  19. 19.

    Said, T. O., A. A. Omran, K. F. Fawy, and A. M. Idris (2014) Heavy Metals in Twelve Edible Marine Fish Species from Jizan Fisheries, Saudi Arabia: Monitoring and Assessment. Fresen Environ. Bull. 23: 801–809.

    CAS  Google Scholar 

  20. 20.

    Liu, Y., Q. Fu, J. Gao, W. G. Xu, B. Yin, Y. Q. Cao, and W. H. Qin (2013) [Concentrations and safety evaluation of heavy metals in aquatic products of Yancheng, Jiangsu Province]. Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.]. 34: 4081–4089.

    Google Scholar 

  21. 21.

    Liu, J. L., X. R. Xu, S. Yu, H. Cheng, J. X. Peng, Y. G. Hong, and X. B. Feng (2014) Mercury contamination in fish and human hair from Hainan Island, South China Sea: Implication for human exposure. Environ. Res. 135: 42–47.

    CAS  Article  Google Scholar 

  22. 22.

    Cirillo, T., E. Fasano, V. Viscardi, A. Arnese, and R. Amodio-Cocchieri (2010) Survey of lead, cadmium, mercury and arsenic in seafood purchased in Campania, Italy. Food Additives & Contaminants. Part B, Surveillance 3: 30–38.

    CAS  Article  Google Scholar 

  23. 23.

    Park, J. S., S. Y. Jung, Y. J. Son, S. J. Choi, M. S. Kim, J. G. Kim, S. H. Park, S. M. Lee, Y. Z. Chae, and M. Y. Kim (2011) Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea. Food Additives & Contaminants. Part B, Surveillance 4: 268–274.

    CAS  Article  Google Scholar 

  24. 24.

    Antelo, L. T., C. Lopes, A. Franco-Uria, and A. A. Alonso (2012) Fish discards management: pollution levels and best available removal techniques. Marine Pollut. Bull. 64: 1277–1290.

    CAS  Article  Google Scholar 

  25. 25.

    Syakti, A. D., C. Demelas, N. V. Hidayati, G. Rakasiwi, L. Vassalo, N. Kumar, P. Prudent, and P. Doumenq (2015) Heavy metal concentrations in natural and human-impacted sediments of Segara Anakan Lagoon, Indonesia. Environ. Monit. Assess. 187: 4079.

    CAS  Article  Google Scholar 

  26. 26.

    Sowmya, R., K. P. Indumathi, S. Arora, V. Sharma, and A. K. Singh (2015) Detection of calcium based neutralizers in milk and milk products by AAS. J. Food Sci. Technol. 52: 1188–1193.

    CAS  Article  Google Scholar 

  27. 27.

    Lemos, V. A. and L. O. dos Santos (2014) A new method for preconcentration and determination of mercury in fish, shellfish and saliva by cold vapour atomic absorption spectrometry. Food Chem. 149: 203–207.

    CAS  Article  Google Scholar 

  28. 28.

    Ahmad, K., A. Azizullah, S. Shama, and M. N. Khattak (2014) Determination of heavy metal contents in water, sediments, and fish tissues of Shizothorax plagiostomus in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Environ. Monit. Assess. 186: 7357–7366.

    CAS  Article  Google Scholar 

  29. 29.

    Verleysen, E., E. Van Doren, N. Waegeneers, P. J. De Temmerman, M. Abi Daoud Francisco, and J. Mast (2015) TEM and SPICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J. Agricult. Food Chem. 63: 3570–3578.

    CAS  Article  Google Scholar 

  30. 30.

    Liu, R., P. Wu, L. Yang, X. Hou, and Y. Lv (2014) Inductively coupled plasma mass spectrometry-based immunoassay: A review. Mass Spectrom. Rev. 33: 373–393.

    Article  Google Scholar 

  31. 31.

    Fernandez, Z. H., L. A. V. Rojas, A. M. Alvarez, J. R. E. Alvarez, J. A. dos Santos, I. P. Gonzalez, M. R. Gonzalez, N. A. Macias, D. L. Sanchez, and D. H. Torres (2015) Application of Cold Vapor-Atomic Absorption (CVAAS) Spectrophotometry and inductively coupled plasma-atomic emission spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS. Food Control. 48: 37–42.

    CAS  Article  Google Scholar 

  32. 32.

    Perugini, M., P. Visciano, M. Manera, A. Zaccaroni, V. Olivieri, and M. Amorena (2014) Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy. Environ. Monitor. Assess. 186: 2205–2213.

    CAS  Article  Google Scholar 

  33. 33.

    Annibaldi, A., S. Illuminati, C. Truzzi, and G. Scarponi (2011) SWASV speciation of Cd, Pb and Cu for the determination of seawater contamination in the area of the Nicole shipwreck (Ancona coast, Central Adriatic Sea). Marine Pollut. Bull. 62: 2813–2821.

    CAS  Article  Google Scholar 

  34. 34.

    Meucci, V., L. Intorre, C. Pretti, S. Laschi, M. Minunni, and M. Mascini (2009) Disposable electrochemical sensor for rapid measurement of heavy metals in fish by square wave anodic stripping voltammetry (SWASV). Veterinary Res. Communicat. 33: 249–252.

    Article  Google Scholar 

  35. 35.

    Fu, F. and Q. Wang (2011) Removal of heavy metal ions from wastewaters: A review. J. Environ. Management. 92: 407–418.

    CAS  Article  Google Scholar 

  36. 36.

    Li, M., H. L. Gou, I. Al-Ogaidi, and N. Q. Wu (2013) Nanostructured Sensors for Detection of Heavy Metals: A Review. Acs. Sustain. Chem. Eng. 1: 713–723.

    Article  Google Scholar 

  37. 37.

    Long, F., A. Zhu, H. Shi, H. Wang, and J. Liu (2013) Rapid onsite/ in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Scientific Rep. 3: 2308.

    Google Scholar 

  38. 38.

    Porchetta, A., A. Vallee-Belisle, K. W. Plaxco, and F. Ricci (2013) Allosterically tunable, DNA-based switches triggered by heavy metals. J. Am. Chem. Soc. 135: 13238–13241.

    CAS  Article  Google Scholar 

  39. 39.

    Wei, Y., B. Li, X. Wang, and Y. Duan (2014) A nano-graphite-DNA hybrid sensor for magnified fluorescent detection of mercury( II) ions in aqueous solution. The Anal. 139: 1618–1621.

    CAS  Article  Google Scholar 

  40. 40.

    Rajamani, S., M. Torres, V. Falcao, J. E. Gray, D. A. Coury, P. Colepicolo, and R. Sayre (2014) Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor. Plant Physiol. 164: 1059–1067.

    CAS  Article  Google Scholar 

  41. 41.

    Li, M., Q. Wang, X. Shi, L. A. Hornak, and N. Wu (2011) Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal. Chem. 83: 7061–7065.

    CAS  Article  Google Scholar 

  42. 42.

    Wang, Y., L. Bao, Z. Liu, and D. W. Pang (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal. Chem. 83: 8130–8137.

    CAS  Article  Google Scholar 

  43. 43.

    Kikkeri, R., V. Padler-Karavani, S. Diaz, A. Verhagen, H. Yu, H. Cao, M. A. Langereis, R. J. De Groot, X. Chen, and A. Varki (2013) Quantum dot nanometal surface energy transfer based biosensing of sialic acid compositions and linkages in biological samples. Anal. Chem. 85: 3864–3870.

    CAS  Article  Google Scholar 

  44. 44.

    Krishnamurthy, S. and P. V. Kamat (2014) CdSe-graphene oxide light-harvesting assembly: Size-dependent electron transfer and light energy conversion aspects. Chemphyschem: A European J. Chem. Physics and Physical Chem. 15: 2129–2135.

    CAS  Article  Google Scholar 

  45. 45.

    Hu, L., X. Liu, A. Cecconello, and I. Willner (2014) Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs. Nano Lett. 14: 6030–6035.

    CAS  Article  Google Scholar 

  46. 46.

    Wang, G., C. Lim, L. Chen, H. Chon, J. Choo, J. Hong, and A. J. de Mello (2009) Surface-enhanced Raman scattering in nanoliter droplets: Towards high-sensitivity detection of mercury (II) ions. Anal. Bioanal. Chem. 394: 1827–1832.

    CAS  Article  Google Scholar 

  47. 47.

    Peng, H. I. and B. L. Miller (2011) Recent advancements in optical DNA biosensors: Exploiting the plasmonic effects of metal nanoparticles. The Anal. 136: 436–447.

    CAS  Article  Google Scholar 

  48. 48.

    Lee, S. J., and M. Moskovits (2011) Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. Nano Lett. 11: 145–150.

    CAS  Article  Google Scholar 

  49. 49.

    Yang, X., C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu (2010) High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. J. Opt. Soc. Am. A. 27: 977–984.

    CAS  Article  Google Scholar 

  50. 50.

    Liu, J., I. White, and D. L. DeVoe (2011) Nanoparticle-functionalized porous polymer monolith detection elements for surfaceenhanced Raman scattering. Anal. Chem. 83: 2119–2124.

    CAS  Article  Google Scholar 

  51. 51.

    Huang, S. H. and D. H. Chen (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an aminofunctionalized magnetic nano-adsorbent. J. Hazardous Mat. 163: 174–179.

    CAS  Article  Google Scholar 

  52. 52.

    Guo, S., D. Li, L. Zhang, J. Li, and E. Wang (2009) Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomat. 30: 1881–1889.

    CAS  Article  Google Scholar 

  53. 53.

    Xin, X., Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, and H. Li (2012) Highly efficient removal of heavy metal ions by aminefunctionalized mesoporous Fe3O4 nanoparticles. Chem. Eng. J. 184: 132–140.

    CAS  Article  Google Scholar 

  54. 54.

    Gogoi, N., M. Barooah, G. Majumdar, and D. Chowdhury (2015) Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl. Mat. Interfaces. 7: 3058–3067.

    CAS  Article  Google Scholar 

  55. 55.

    Jaiswal, A., S. S. Ghosh, and A. Chattopadhyay (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem. Communicat. 48: 407–409.

    CAS  Article  Google Scholar 

  56. 56.

    Krajewska, B. (2001) Diffusion of metal ions through gel chitosan membranes. React. Funct. Polym. 47: 37–47.

    CAS  Article  Google Scholar 

  57. 57.

    Akhavan, B., K. Jarvis, and P. Majewski (2015) Plasma polymerfunctionalized silica particles for heavy metals removal. ACS Appl. Mat. Interfaces. 7: 4265–4274.

    CAS  Article  Google Scholar 

  58. 58.

    Wang, X. M., Y. F. Pei, M. X. Lu, X. Q. Lu, and X. Z. Du (2015) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J. Mater. Sci. 50: 2113–2121.

    CAS  Article  Google Scholar 

  59. 59.

    Sun, Y. X., Q. Hao, X. R. Xu, X. J. Luo, S. L. Wang, Z. W. Zhang, and B. X. Mai (2014) Persistent organic pollutants in marine fish from Yongxing Island, South China Sea: Levels, composition profiles and human dietary exposure assessment. Chemosphere. 98: 84–90.

    CAS  Article  Google Scholar 

  60. 60.

    Yavuz, C. T., J. T. Mayo, C. Suchecki, J. Wang, A. Z. Ellsworth, H. D'Couto, E. Quevedo, A. Prakash, L. Gonzalez, C. Nguyen, C. Kelty, and V. L. Colvin (2010) Pollution magnet: Nano-magnetite for arsenic removal from drinking water. Environ. Geochem. Health 32: 327–334.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kyobum Kim or Jonghoon Choi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jo, Y., Kim, K. & Choi, J. Perspectives on the nanotechnology applications of for the analytical detection of heavy metals in marine organisms. Biotechnol Bioproc E 21, 191–198 (2016). https://doi.org/10.1007/s12257-015-0737-1

Download citation

Keywords

  • marine organisms
  • heavy metals
  • nanotechnology
  • detection