Advertisement

Biotechnology and Bioprocess Engineering

, Volume 21, Issue 2, pp 191–198 | Cite as

Perspectives on the nanotechnology applications of for the analytical detection of heavy metals in marine organisms

  • Yeonho Jo
  • Kyobum KimEmail author
  • Jonghoon ChoiEmail author
Review Paper

Abstract

Heavy metals accumulate in organisms throughout the food chain and eventually end up in humans. Heavy metals can cause severe diseases and may even result in death. Therefore, concerns about heavy metal accumulation in marine organisms have increased in recent years. To determine solutions to this concern, the sensitive detection of heavy metals in marine organisms is required. Current detection techniques for heavy metals present in marine organisms have several limitations, such as complicated pre-treatment steps and a lengthy analysis time. Thus, there are increasing needs for the newly developed methods of detecting heavy metals in marine organisms. In this review, we focus here on (1) the current detection techniques available and (2) the application of newly emergent nanotechnology for the sensitive detection of heavy metals in marine organisms.

Keywords

marine organisms heavy metals nanotechnology detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Qin, F., G. Li, H. Xiao, Z. Lu, H. Sun, and R. Chen (2012) Largescale synthesis of bismuth hollow nanospheres for highly efficient Cr(VI) removal. Dalton Transact. 41: 11263–11266.CrossRefGoogle Scholar
  2. 2.
    Wongsasuluk, P., S. Chotpantarat, W. Siriwong, and M. Robson (2014) Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environ. Geochem. Health 36: 169–182.CrossRefGoogle Scholar
  3. 3.
    Williams, T. J., and R. Cavicchioli (2014) Marine metaproteomics: Deciphering the microbial metabolic food web. Trends Microbiol. 22: 248–260.CrossRefGoogle Scholar
  4. 4.
    Akoto, O., F. B. Eshun, G. Darko, and E. Adei (2014) Concentrations and health risk assessments of heavy metals in fish from the Fosu Lagoon. Int. J. Environ Res. 8: 403–410.Google Scholar
  5. 5.
    Abida, H., S. Ruchaud, L. Rios, A. Humeau, I. Probert, C. De Vargas, S. Bach, and C. Bowler (2013) Bioprospecting marine plankton. Marine Drugs 11: 4594–4611.CrossRefGoogle Scholar
  6. 6.
    Abdul Wahab, A. S., S. N. Syed Ismail, S. M. Praveena, and S. Awang (2014) Heavy metals uptake of water mimosa (Neptunia oleracea) and its safety for human consumption. Iran J. Public Health. 43: 103–111.Google Scholar
  7. 7.
    Woolston, C. (2014) Ocean biology: Marine dreams. Nature 516: 277–279.CrossRefGoogle Scholar
  8. 8.
    Kim, S. K. (2014) Marine cosmeceuticals. J. Cosmetic Dermatol. 13: 56–67.CrossRefGoogle Scholar
  9. 9.
    Bloch, J. F. and E. Tardieu-Guigues (2014) Marine biotechnologies and synthetic biology, new issues for a fair and equitable profit-sharing commercial use. Mar. Genom. 17: 79–83.CrossRefGoogle Scholar
  10. 10.
    Martins, A., H. Vieira, H. Gaspar, and S. Santos (2014) Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine Drugs 12: 1066–1101.CrossRefGoogle Scholar
  11. 11.
    Gerwick, W. H. and B. S. Moore (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem. Biol. 19: 85–98.CrossRefGoogle Scholar
  12. 12.
    Fusetani, N. (2010) Biotechnological potential of marine natural products. Pure Appl. Chem. 82: 17–26.CrossRefGoogle Scholar
  13. 13.
    Jang, Y. P. (2009) Marine organisms have been an important resource for the drug discovery industry. Arch. Pharmacal. Res. 32: 1483–1484.CrossRefGoogle Scholar
  14. 14.
    Jones, G. (2013) Marine biology: Coral animals combat stress with sulphur. Nature 502: 634–635.CrossRefGoogle Scholar
  15. 15.
    Heymans, J. J., M. Coll, S. Libralato, L. Morissette, and V. Christensen (2014) Global patterns in ecological indicators of marine food webs: A modelling approach. PloS one. 9: e95845.CrossRefGoogle Scholar
  16. 16.
    Ruiz-Guzman, J. A., J. L. Marrugo-Negrete, and S. Diez (2014) Human exposure to mercury through fish consumption: Risk assessment of riverside inhabitants of the urra reservoir, Colombia. Hum. Ecol. Risk Assess. 20: 1151–1163.CrossRefGoogle Scholar
  17. 17.
    Vinodhini, R. and M. Narayanan (2008) Bioaccumulation of heavy metals in organs of fresh water fish Cyprinus earpio (Common carp). Int. J. Environ. Sci. Te. 5: 179–182.CrossRefGoogle Scholar
  18. 18.
    Okyere, H., R. B. Voegborlo, and S. E. Agorku (2015) Human exposure to mercury, lead and cadmium through consumption of canned mackerel, tuna, pilchard and sardine. Food Chem. 179: 331–335.CrossRefGoogle Scholar
  19. 19.
    Said, T. O., A. A. Omran, K. F. Fawy, and A. M. Idris (2014) Heavy Metals in Twelve Edible Marine Fish Species from Jizan Fisheries, Saudi Arabia: Monitoring and Assessment. Fresen Environ. Bull. 23: 801–809.Google Scholar
  20. 20.
    Liu, Y., Q. Fu, J. Gao, W. G. Xu, B. Yin, Y. Q. Cao, and W. H. Qin (2013) [Concentrations and safety evaluation of heavy metals in aquatic products of Yancheng, Jiangsu Province]. Huan jing ke xue= Huanjing kexue / [bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui "Huan jing ke xue" bian ji wei yuan hui.]. 34: 4081–4089.Google Scholar
  21. 21.
    Liu, J. L., X. R. Xu, S. Yu, H. Cheng, J. X. Peng, Y. G. Hong, and X. B. Feng (2014) Mercury contamination in fish and human hair from Hainan Island, South China Sea: Implication for human exposure. Environ. Res. 135: 42–47.CrossRefGoogle Scholar
  22. 22.
    Cirillo, T., E. Fasano, V. Viscardi, A. Arnese, and R. Amodio-Cocchieri (2010) Survey of lead, cadmium, mercury and arsenic in seafood purchased in Campania, Italy. Food Additives & Contaminants. Part B, Surveillance 3: 30–38.CrossRefGoogle Scholar
  23. 23.
    Park, J. S., S. Y. Jung, Y. J. Son, S. J. Choi, M. S. Kim, J. G. Kim, S. H. Park, S. M. Lee, Y. Z. Chae, and M. Y. Kim (2011) Total mercury, methylmercury and ethylmercury in marine fish and marine fishery products sold in Seoul, Korea. Food Additives & Contaminants. Part B, Surveillance 4: 268–274.CrossRefGoogle Scholar
  24. 24.
    Antelo, L. T., C. Lopes, A. Franco-Uria, and A. A. Alonso (2012) Fish discards management: pollution levels and best available removal techniques. Marine Pollut. Bull. 64: 1277–1290.CrossRefGoogle Scholar
  25. 25.
    Syakti, A. D., C. Demelas, N. V. Hidayati, G. Rakasiwi, L. Vassalo, N. Kumar, P. Prudent, and P. Doumenq (2015) Heavy metal concentrations in natural and human-impacted sediments of Segara Anakan Lagoon, Indonesia. Environ. Monit. Assess. 187: 4079.CrossRefGoogle Scholar
  26. 26.
    Sowmya, R., K. P. Indumathi, S. Arora, V. Sharma, and A. K. Singh (2015) Detection of calcium based neutralizers in milk and milk products by AAS. J. Food Sci. Technol. 52: 1188–1193.CrossRefGoogle Scholar
  27. 27.
    Lemos, V. A. and L. O. dos Santos (2014) A new method for preconcentration and determination of mercury in fish, shellfish and saliva by cold vapour atomic absorption spectrometry. Food Chem. 149: 203–207.CrossRefGoogle Scholar
  28. 28.
    Ahmad, K., A. Azizullah, S. Shama, and M. N. Khattak (2014) Determination of heavy metal contents in water, sediments, and fish tissues of Shizothorax plagiostomus in river Panjkora at Lower Dir, Khyber Pakhtunkhwa, Pakistan. Environ. Monit. Assess. 186: 7357–7366.CrossRefGoogle Scholar
  29. 29.
    Verleysen, E., E. Van Doren, N. Waegeneers, P. J. De Temmerman, M. Abi Daoud Francisco, and J. Mast (2015) TEM and SPICP-MS analysis of the release of silver nanoparticles from decoration of pastry. J. Agricult. Food Chem. 63: 3570–3578.CrossRefGoogle Scholar
  30. 30.
    Liu, R., P. Wu, L. Yang, X. Hou, and Y. Lv (2014) Inductively coupled plasma mass spectrometry-based immunoassay: A review. Mass Spectrom. Rev. 33: 373–393.CrossRefGoogle Scholar
  31. 31.
    Fernandez, Z. H., L. A. V. Rojas, A. M. Alvarez, J. R. E. Alvarez, J. A. dos Santos, I. P. Gonzalez, M. R. Gonzalez, N. A. Macias, D. L. Sanchez, and D. H. Torres (2015) Application of Cold Vapor-Atomic Absorption (CVAAS) Spectrophotometry and inductively coupled plasma-atomic emission spectrometry methods for cadmium, mercury and lead analyses of fish samples. Validation of the method of CVAAS. Food Control. 48: 37–42.CrossRefGoogle Scholar
  32. 32.
    Perugini, M., P. Visciano, M. Manera, A. Zaccaroni, V. Olivieri, and M. Amorena (2014) Heavy metal (As, Cd, Hg, Pb, Cu, Zn, Se) concentrations in muscle and bone of four commercial fish caught in the central Adriatic Sea, Italy. Environ. Monitor. Assess. 186: 2205–2213.CrossRefGoogle Scholar
  33. 33.
    Annibaldi, A., S. Illuminati, C. Truzzi, and G. Scarponi (2011) SWASV speciation of Cd, Pb and Cu for the determination of seawater contamination in the area of the Nicole shipwreck (Ancona coast, Central Adriatic Sea). Marine Pollut. Bull. 62: 2813–2821.CrossRefGoogle Scholar
  34. 34.
    Meucci, V., L. Intorre, C. Pretti, S. Laschi, M. Minunni, and M. Mascini (2009) Disposable electrochemical sensor for rapid measurement of heavy metals in fish by square wave anodic stripping voltammetry (SWASV). Veterinary Res. Communicat. 33: 249–252.CrossRefGoogle Scholar
  35. 35.
    Fu, F. and Q. Wang (2011) Removal of heavy metal ions from wastewaters: A review. J. Environ. Management. 92: 407–418.CrossRefGoogle Scholar
  36. 36.
    Li, M., H. L. Gou, I. Al-Ogaidi, and N. Q. Wu (2013) Nanostructured Sensors for Detection of Heavy Metals: A Review. Acs. Sustain. Chem. Eng. 1: 713–723.CrossRefGoogle Scholar
  37. 37.
    Long, F., A. Zhu, H. Shi, H. Wang, and J. Liu (2013) Rapid onsite/ in-situ detection of heavy metal ions in environmental water using a structure-switching DNA optical biosensor. Scientific Rep. 3: 2308.Google Scholar
  38. 38.
    Porchetta, A., A. Vallee-Belisle, K. W. Plaxco, and F. Ricci (2013) Allosterically tunable, DNA-based switches triggered by heavy metals. J. Am. Chem. Soc. 135: 13238–13241.CrossRefGoogle Scholar
  39. 39.
    Wei, Y., B. Li, X. Wang, and Y. Duan (2014) A nano-graphite-DNA hybrid sensor for magnified fluorescent detection of mercury( II) ions in aqueous solution. The Anal. 139: 1618–1621.CrossRefGoogle Scholar
  40. 40.
    Rajamani, S., M. Torres, V. Falcao, J. E. Gray, D. A. Coury, P. Colepicolo, and R. Sayre (2014) Noninvasive evaluation of heavy metal uptake and storage in micoralgae using a fluorescence resonance energy transfer-based heavy metal biosensor. Plant Physiol. 164: 1059–1067.CrossRefGoogle Scholar
  41. 41.
    Li, M., Q. Wang, X. Shi, L. A. Hornak, and N. Wu (2011) Detection of mercury(II) by quantum dot/DNA/gold nanoparticle ensemble based nanosensor via nanometal surface energy transfer. Anal. Chem. 83: 7061–7065.CrossRefGoogle Scholar
  42. 42.
    Wang, Y., L. Bao, Z. Liu, and D. W. Pang (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal. Chem. 83: 8130–8137.CrossRefGoogle Scholar
  43. 43.
    Kikkeri, R., V. Padler-Karavani, S. Diaz, A. Verhagen, H. Yu, H. Cao, M. A. Langereis, R. J. De Groot, X. Chen, and A. Varki (2013) Quantum dot nanometal surface energy transfer based biosensing of sialic acid compositions and linkages in biological samples. Anal. Chem. 85: 3864–3870.CrossRefGoogle Scholar
  44. 44.
    Krishnamurthy, S. and P. V. Kamat (2014) CdSe-graphene oxide light-harvesting assembly: Size-dependent electron transfer and light energy conversion aspects. Chemphyschem: A European J. Chem. Physics and Physical Chem. 15: 2129–2135.CrossRefGoogle Scholar
  45. 45.
    Hu, L., X. Liu, A. Cecconello, and I. Willner (2014) Dual switchable CRET-induced luminescence of CdSe/ZnS quantum dots (QDs) by the hemin/G-quadruplex-bridged aggregation and deaggregation of two-sized QDs. Nano Lett. 14: 6030–6035.CrossRefGoogle Scholar
  46. 46.
    Wang, G., C. Lim, L. Chen, H. Chon, J. Choo, J. Hong, and A. J. de Mello (2009) Surface-enhanced Raman scattering in nanoliter droplets: Towards high-sensitivity detection of mercury (II) ions. Anal. Bioanal. Chem. 394: 1827–1832.CrossRefGoogle Scholar
  47. 47.
    Peng, H. I. and B. L. Miller (2011) Recent advancements in optical DNA biosensors: Exploiting the plasmonic effects of metal nanoparticles. The Anal. 136: 436–447.CrossRefGoogle Scholar
  48. 48.
    Lee, S. J., and M. Moskovits (2011) Visualizing chromatographic separation of metal ions on a surface-enhanced Raman active medium. Nano Lett. 11: 145–150.CrossRefGoogle Scholar
  49. 49.
    Yang, X., C. Shi, D. Wheeler, R. Newhouse, B. Chen, J. Z. Zhang, and C. Gu (2010) High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced Raman scattering. J. Opt. Soc. Am. A. 27: 977–984.CrossRefGoogle Scholar
  50. 50.
    Liu, J., I. White, and D. L. DeVoe (2011) Nanoparticle-functionalized porous polymer monolith detection elements for surfaceenhanced Raman scattering. Anal. Chem. 83: 2119–2124.CrossRefGoogle Scholar
  51. 51.
    Huang, S. H. and D. H. Chen (2009) Rapid removal of heavy metal cations and anions from aqueous solutions by an aminofunctionalized magnetic nano-adsorbent. J. Hazardous Mat. 163: 174–179.CrossRefGoogle Scholar
  52. 52.
    Guo, S., D. Li, L. Zhang, J. Li, and E. Wang (2009) Monodisperse mesoporous superparamagnetic single-crystal magnetite nanoparticles for drug delivery. Biomat. 30: 1881–1889.CrossRefGoogle Scholar
  53. 53.
    Xin, X., Q. Wei, J. Yang, L. Yan, R. Feng, G. Chen, B. Du, and H. Li (2012) Highly efficient removal of heavy metal ions by aminefunctionalized mesoporous Fe3O4 nanoparticles. Chem. Eng. J. 184: 132–140.CrossRefGoogle Scholar
  54. 54.
    Gogoi, N., M. Barooah, G. Majumdar, and D. Chowdhury (2015) Carbon dots rooted agarose hydrogel hybrid platform for optical detection and separation of heavy metal ions. ACS Appl. Mat. Interfaces. 7: 3058–3067.CrossRefGoogle Scholar
  55. 55.
    Jaiswal, A., S. S. Ghosh, and A. Chattopadhyay (2012) One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem. Communicat. 48: 407–409.CrossRefGoogle Scholar
  56. 56.
    Krajewska, B. (2001) Diffusion of metal ions through gel chitosan membranes. React. Funct. Polym. 47: 37–47.CrossRefGoogle Scholar
  57. 57.
    Akhavan, B., K. Jarvis, and P. Majewski (2015) Plasma polymerfunctionalized silica particles for heavy metals removal. ACS Appl. Mat. Interfaces. 7: 4265–4274.CrossRefGoogle Scholar
  58. 58.
    Wang, X. M., Y. F. Pei, M. X. Lu, X. Q. Lu, and X. Z. Du (2015) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J. Mater. Sci. 50: 2113–2121.CrossRefGoogle Scholar
  59. 59.
    Sun, Y. X., Q. Hao, X. R. Xu, X. J. Luo, S. L. Wang, Z. W. Zhang, and B. X. Mai (2014) Persistent organic pollutants in marine fish from Yongxing Island, South China Sea: Levels, composition profiles and human dietary exposure assessment. Chemosphere. 98: 84–90.CrossRefGoogle Scholar
  60. 60.
    Yavuz, C. T., J. T. Mayo, C. Suchecki, J. Wang, A. Z. Ellsworth, H. D'Couto, E. Quevedo, A. Prakash, L. Gonzalez, C. Nguyen, C. Kelty, and V. L. Colvin (2010) Pollution magnet: Nano-magnetite for arsenic removal from drinking water. Environ. Geochem. Health 32: 327–334.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Integrative EngineeringChung-Ang UniversitySeoulKorea
  2. 2.Division of BioengineeringIncheon National UniversityIncheonKorea

Personalised recommendations