Skip to main content
Log in

Functional characterization of Vibrio cholerae O1 WbeW enzyme responsible for initial reaction in O antigen biosynthesis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Vibrio cholerae O1 employs the ATP-binding cassette (ABC) transporter-dependent pathway for O antigen biosynthesis. Different from highly studied Klebsiella pneumoniae and Escherichia coli, it was reported that initial reaction of O antigen biosynthesis in V. cholerae O1 may be involved in WbeW protein, which is predicted to be a galactosyltransferase. In this work, we report expression and characterization of WbeW enzyme. WbeW was expressed as membrane-associated form in E. coli and it was obtained with high purity. The enzyme had a function of transferring Gal-1-P from UDP-Gal to Und-P, implying that initial glycan of O antigen in V. cholerae O1 can be composed of a Gal residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raetz, C. R. and C. Whitfield (2002) Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71: 635–700.

    Article  CAS  Google Scholar 

  2. Greenfield, L. K. and C. Whitfield (2012) Synthesis of lipopolysaccharide O-antigen by ABC transporter-dependent pathways. Carbohyd. Res. 356: 12–14.

    Article  CAS  Google Scholar 

  3. Kos, V., L. Cuthbertson, and C. Whitfield (2009) The Klebsiella pneumoniae O2a antigen defines a second mechanism for O antigen ATP-binding cassette transporters. J. Biol. Chem. 284: 2947–2956.

    Article  CAS  Google Scholar 

  4. Al-Dabbagh, B., D. Mengin-Lecreulx, and A. Bouhss (2008) Purification and characterization of the bacterial UDPGlcNAc: undecaprenyl-phosphate GlcNAc-1-phosphate transferase WecA. J. Bacteriol. 190: 7141–7146.

    Article  CAS  Google Scholar 

  5. Amer, A. O. and M. A. Valvano (2002) Conserved aspartic acids are essential for the enzymatic activity of the WecA protein initiating the biosynthesis of O-specific lipopolysaccharide and enterobacterial common antigen in Escherichia coli. Microbio. 148: 571–582.

    Article  CAS  Google Scholar 

  6. Patel, K. B., S. E. Furlong, and M. A. Valvano (2010) Functional analysis of the C-terminal domain of the WbaP protein that mediates initiation of O antigen synthesis in Salmonella enterica. Glycobiol. 20: 1389–1401.

    Article  CAS  Google Scholar 

  7. Saldias, M. S., K. Patel, C. L. Marolda, M. Bittner, I. Contreras, and M. A. Valvano (2008) Distinct functional domains of the Salmonella enterica WbaP transferase that is involved in the initiation reaction for synthesis of the O antigen subunit. Microbiol. 154: 440–453.

    Article  CAS  Google Scholar 

  8. Wang, L., D. Liu, and P. R. Reeves (1996) C-terminal half of Salmonella enterica WbaP (RfbP) is the galactosyl-1-phosphate transferase domain catalyzing the first step of O-antigen synthesis. J. Bacteriol. 178: 2598–2604.

    CAS  Google Scholar 

  9. Chatterjee, S. N. and K. Chaudhuri (2003) Lipopolysaccharides of Vibrio cholerae I. Physical and chemical characterization. BBA-Mol. Basis Dis. 1639: 65–79.

    Article  CAS  Google Scholar 

  10. Chatterjee, S. N. and K. Chaudhuri (2004) Lipopolysaccharides of Vibrio cholerae II. Genetics of biosynthesis. BBA-Mol Basis Dis. 1690: 93–109.

    Article  CAS  Google Scholar 

  11. Cuthbertson, L., V. Kos, and C. Whitfield (2010) ABC transporters involved in export of cell surface glycoconjugates. Microbiol. Mol. Biol. Rev. 74: 341–362.

    Article  CAS  Google Scholar 

  12. Manning, P. A., U. H. Stroeher, L. E. Karageorgos, and R. Morona (1995) Putative O-antigen transport genes within the Rfb region of Vibrio cholerae O1 are homologous to those for capsule transport. Gene. 158: 1–7.

    Article  CAS  Google Scholar 

  13. Fallarino, A., C. Mavrangelos, U. H. Stroeher, and P. A. Manning (1997) Identification of additional genes required for O-antigen biosynthesis in Vibrio cholerae O1. J. Bacteriol. 179: 2147–2153.

    CAS  Google Scholar 

  14. Guerin, M. E., J. Kordulakova, F. Schaeffer, Z. Svetlikova, A. Buschiazzo, D. Giganti, B. Gicquel, K. Mikusova, M. Jackson, and P. M. Alzari (2007) Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. J. Biol. Chem. 282: 20705–20714.

    Article  CAS  Google Scholar 

  15. Lind, J., T. Ramo, M. L. Klement, E. Barany-Wallje, R. M. Epand, R. F. Epand, L. Maler, and A. Wieslander (2007) High cationic charge and bilayer interface-binding helices in a regulatory lipid glycosyltransferase. Biochem. 46: 5664–5677.

    Article  CAS  Google Scholar 

  16. Furlong, S. E., A. Ford, L. Albarnez-Rodriguez, and M. A. Valvano (2015) Topological analysis of the Escherichia coli WcaJ protein reveals a new conserved configuration for the polyisoprenyl-phosphate hexose-1-phosphate transferase family. Sci. Rep. 5: 9178–9186.

    Article  Google Scholar 

  17. Lehrer, J., K. A. Vigeant, L. D. Tatar, and M. A. Valvano (2007) Functional characterization and membrane topology of Escherichia coli WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. J. Bacteriol. 189: 2618–2628.

    Article  CAS  Google Scholar 

  18. Patel, K. B., E. Ciepichal, E. Swiezewska, and M. A. Valvano (2012) The C-terminal domain of the Salmonella enterica WbaP (UDP-galactose:Und-P galactose-1-phosphate transferase) is sufficient for catalytic activity and specificity for undecaprenyl monophosphate. Glycobiol. 22: 116–122.

    Article  CAS  Google Scholar 

  19. Cartee, R. T., W. T. Forsee, M. H. Bender, K. D. Ambrose, and J. Yother () CpsE from type 2 Streptococcus pneumoniae catalyzes the reversible addition of glucose-1-phosphate to a polyprenyl phosphate acceptor, initiating type 2 capsule repeat unit formation. J. Bacteriol. 187: 7425-7433.

  20. Ielpi, L., R. O. Couso, and M. A. Dankert (1993) Sequential assembly and polymerization of the polyprenol-linked pentasaccharide repeating unit of the xanthan polysaccharide in Xanthomonas campestris. J. Bacteriol. 175: 2490–2500.

    CAS  Google Scholar 

  21. Pelosi, L., M. Boumedienne, N. Saksouk, J. Geiselmann, and R. A. Geremia (2005) The glucosyl-1-phosphate transferase WchA (Cap8E) primes the capsular polysaccharide repeat unit biosynthesis of Streptococcus pneumoniae serotype 8. Biochem. Bioph. Res. Co. 327: 857–865.

    Article  CAS  Google Scholar 

  22. Rubens, C. E., L. M. Heggen, R. F. Haft, and M. R. Wessels (1993) Identification of cpsD, a gene essential for type III capsule expression in group B streptococci. Mol. Microbiol. 8: 843–855.

    Article  CAS  Google Scholar 

  23. Wang, L. and P. R. Reeves (1994) Involvement of the galactosyl-1-phosphate transferase encoded by the Salmonella enterica rfbP gene in O-antigen subunit processing. J. Bacteriol. 176: 4348–4356.

    CAS  Google Scholar 

  24. Toh, E., H. D. Kurtz, and Y. V. Jr. Brun (2008) Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps. J. Bacteriol. 190: 7219–7231.

    Article  CAS  Google Scholar 

  25. Saidijam, M., G. Psakis, J. L. Clough, J. Meuller, S. Suzuki, C. J. Hoyle, S. L. Palmer, S. M. Morrison, M. K. Pos, R. C. Essenberg, M. C. Maiden, A. Abu-bakr, S. G. Baumberg, A. A. Neyfakh, J. K. Griffth, M. J. Stark, A. Ward, J. O’Reily, N. G. Rutherford, M. K. Phillips-Jones, and P. J. Henderson (2003) Collection and characterisation of bacterial membrane proteins. FEBS Lett. 555: 170–175.

    Article  CAS  Google Scholar 

  26. Kyte, J. and R.F. Doolittle (1982) A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157: 105–132.

    Article  CAS  Google Scholar 

  27. Keenan, R. J., D. M. Freymann, R. M. Stroud, and P. Walter (2001) The signal recognition particle. Annu. Rev. Biochem. 70: 755–775.

    Article  CAS  Google Scholar 

  28. Luirink, J. and I. Sinning (2004) SRP-mediated protein targeting: Structure and function revisited. BBA-Mol. Cell Res. 1694: 17–35.

    CAS  Google Scholar 

  29. Schaffitzel, C., M. Oswald, I. Berger, T. Ishikawa, J. P. Abrahams, H. K. Koerten, R. I. Koning, and N. Ban (2006) Structure of the E. coli signal recognition particle bound to a translating ribosome. Natur. 444: 503–506.

    Article  CAS  Google Scholar 

  30. Goder, V. and M. Spiess (2001) Topogenesis of membrane proteins: Determinants and dynamics. FEBS Lett. 504: 87–93.

    Article  CAS  Google Scholar 

  31. Guerin, M. E., F. Schaeffer, A. Chaffotte, P. Gest, D. Giganti, J. Kordulakova, M. van der Woerd, M. Jackson, and P. M. Alzari (2009) Substrate-induced conformational changes in the essential peripheral membrane-associated mannosyltransferase PimA from mycobacteria: Implications for catalysis. J. Biol. Chem. 284: 21613–21625.

    Article  CAS  Google Scholar 

  32. Seddon, A. M., P. Curnow, and P. J. Booth (2004) Membrane proteins, lipids and detergents: Not just a soap opera. BBABiomembranes. 1666: 105–117.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Joon Cha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, C.S., Seo, J.H. & Cha, H.J. Functional characterization of Vibrio cholerae O1 WbeW enzyme responsible for initial reaction in O antigen biosynthesis. Biotechnol Bioproc E 20, 980–987 (2015). https://doi.org/10.1007/s12257-015-0677-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0677-9

Keywords

Navigation