Skip to main content

Advertisement

Log in

Rational design and molecular engineering of peptide aptamers to target human pancreatic trypsin in acute pancreatitis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Human pancreatic trypsin (hPT) is an established target for acute pancreatitis (AP) therapeutics. Here, a bioinformatics protocol of protein docking, peptide refinement, dynamics simulation and affinity analysis was described to perform rational design and molecular engineering of hPT peptide aptamers. Protein docking was employed to model the intermolecular interactions between hPT and its cognate inhibitory protein, the human pancreatic trypsin inhibitor (hTI). A number of peptide fragments were cut out from the interaction sites of docked hPT–hTI complexes, from which a decapeptide fragment 13LNGCTLEYRP22 was found to exhibit potent inhibition against hPT (K i = 5.3 ± 0.8 μM). We also carried out alanine scanning and virtual mutagenesis to systematically examine the independent contribution of peptide residues to binding affinity, and the harvested knowledge were then used to guide modification and optimization of the decapeptide fragment. Subsequently, inhibition studies of nine promising candidates against recombinant hPT were conducted, from which four samples were successfully identified to have high or moderate potency (K i < 10 μM). In particular, the peptides LQVCTLEYCN and LQICTLEYCT were found to inhibit hPT activity significantly (K i = 0.23 ± 0.04 and 0.85 ± 0.18 μM, respectively). Structural analysis of hPT–peptide complex systems unraveled diverse chemical interactions such as hydrogen bonds, salt bridges and hydrophobic forces across the complex interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Steinberg, W. and S. Tenner (1994) Acute pancreatitis. New Engl. J. Med. 330: 1198–1210.

    Article  CAS  Google Scholar 

  2. Fagenholz, P. J., C. Fernández-del Castillo, N. S. Harris, A. J. Pelletier, and C. A. Camargo (2007) Direct medical costs of acute pancreatitis hospitalizations in the United States. Pancreas 35: 302–307.

    Article  Google Scholar 

  3. Yadav, D. and A. B. Lowenfels (2006) Trends in the epidemiology of the first attack of acute pancreatitis: A systematic review. Pancreas 33: 323–330.

    Article  Google Scholar 

  4. Tenner, S., J. Baillie, J. DeWitt, and S. S. Vege (2013) American College of Gastroenterology guideline: Management of acute pancreatitis. Am. J. Gastroenterol. 108: 1400–1415.

    Article  CAS  Google Scholar 

  5. Tenner, S. and P. A. Banks (1997) Acute pancreatitis: Nonsurgical management. World J. Surg. 21: 143–148.

    Article  CAS  Google Scholar 

  6. Bassi, C., M. Falconi, E. Caldiron, R. Salvia, N. Sartori, G. Butturini, C. Contro, S. Marcucci, L. Casetti, and P. Pederzoli (1999) Assessment and treatment of severe pancreatitis protease inhibitor. Digestion 60: 5–8.

    Article  Google Scholar 

  7. Li, Y., Q. Huang, S. Zhang, S. Liu, C. Chi, and Y. Tang (1994) Studies on an artificial trypsin inhibitor peptide derived from the mung bean trypsin inhibitor: chemical synthesis, refolding, and crystallographic analysis of its complex with trypsin. J. Biochem. 116: 18–25.

    CAS  Google Scholar 

  8. Guo, C. T., S. McClean, C. Shaw, P. F. Rao, M. Y. Ye, and A. J. Bjourson (2013) Trypsin and chymotrypsin inhibitor peptides from the venom of Chinese Daboia russellii siamensis. Toxicon 63: 154–164.

    Article  CAS  Google Scholar 

  9. Smith, G. P. and V. A. Petrenko (1997) Phage display. Chem. Rev. 97: 391–410.

    Article  CAS  Google Scholar 

  10. Szardenings, M. (2003) Phage display of random peptide libraries: Applications, limits, and potential. J. Recept. Signal. Transduct. Res. 23: 307–349.

    Article  CAS  Google Scholar 

  11. Zhou, P., C. Wang, Y. Ren, C. Yang, and F. Tian (2013) Computational peptidology: A new and promising approach to therapeutic peptide design. Curr. Med. Chem. 20: 1985–1996.

    Article  CAS  Google Scholar 

  12. Gaboriaud, C., L. Serre, O. Guy-Crotte, E. Forest, and J. C. Fontecilla-Camps (1996) Crystal structure of human trypsin 1: Unexpected phosphorylation of Tyr151. J. Mol. Biol. 259: 995–1010.

    Article  CAS  Google Scholar 

  13. Salameh, M. A., A. S. Soares, A. Hockla, and E. S. Radisky (2008) Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J. Biol. Chem. 283: 4115–4123.

    Article  CAS  Google Scholar 

  14. Polgár, L. (2005) The catalytic triad of serine peptidases. Cell Mol. Life Sci. 62: 2161–2172.

    Article  Google Scholar 

  15. Colwell, L. J., B. P. Brenner, and A. W. Murray (2014) Conservation weighting functions enable covariance analyses to detect functionally important amino acids. PLoS ONE 9: e107723.

    Article  Google Scholar 

  16. Wang, P., Y. Li, Q. Shao, W. Zhou, and K. Wang (2015) Targeting human secretory phospholipase A2 with designed peptide inhibitors for inflammatory therapy. J. Drug Target. 2: 140–146.

    Article  Google Scholar 

  17. Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne (2000) The protein data bank. Nucleic Acids Res. 28: 235–242.

    Article  CAS  Google Scholar 

  18. Ibrahim, S. B. and V. Pattabhi (2005) Trypsin inhibition by a peptide hormone: Crystal structure of trypsin-vasopressin complex. J. Mol. Biol. 348: 1191–1198.

    Article  Google Scholar 

  19. Li, J., C. Zhang, X. Xu, J. Wang, H. Yu, R. Lai, and W. Gong (2007) Trypsin inhibitory loop is an excellent lead structure to design serine protease inhibitors and antimicrobial peptides. FASEB J. 21: 2466–2473.

    Article  CAS  Google Scholar 

  20. Word, J. M., S. C. Lovell, J. S. Richardson, and D. C. Richardson (1999) Asparagine and glutamine: Using hydrogen atom contacts in the choice of side-chain amide orientation. J. Mol. Biol. 285: 1735–1747.

    Article  CAS  Google Scholar 

  21. Rostkowski, M., M. H. Olsson, C. R. Søndergaard, and J. H. Jensen (2011) Graphical analysis of pH-dependent properties of proteins predicted using PROPKA. BMC Struct. Biol. 11: 6.

    Article  CAS  Google Scholar 

  22. Chen, R., L. Li, and Z. Weng (2003) ZDOCK: An initial-stage protein-docking algorithm. Proteins 52: 80–87.

    Article  CAS  Google Scholar 

  23. London, N., B. Raveh, E. Cohen, G. Fathi, and O. Schueler-Furman (2011) Rosetta FlexPepDock web server––high resolution modeling of peptide–protein interactions. Nucleic Acids Res. 39: W249–W253.

    Article  CAS  Google Scholar 

  24. Raveh, B., N. London, and O. Schueler-Furman (2010) Sub-angstrom modeling of complexes between flexible peptides and globular proteins. Proteins 78: 2029–2040.

    CAS  Google Scholar 

  25. Duan, Y., C. Wu, S. Chowdhury, M. C. Lee, G. M. Xiong, and W. Zhang (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24: 1999–2012.

    Article  CAS  Google Scholar 

  26. Zhou, P., S. Zhang, Y. Wang, C. Yang, and J. Huang (2015) Structural modeling of HLA-B*1502/peptide/carbamazepine/Tcell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome/ toxic epidermal necrolysis. J. Biomol. Struct. Dyn. (In press, doi: 10.1080/07391102.2015.1092476).

    Google Scholar 

  27. Darden, T., D. York, and L. Pedersen (1993) Particale mesh Ewald and N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98: 10089–10092.

    Article  CAS  Google Scholar 

  28. Ryckaert, J., G. Ciccotti, and H. J. C. Berendsen (1997) Numerical-integration of cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23: 327–341.

    Article  Google Scholar 

  29. Kollman, P. A., I. Massova, C. Reyes, B. Kuhn, S. H. Huo, and L. Chong (2000) Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 33: 889–897.

    Article  CAS  Google Scholar 

  30. Case, D. (1994) Normal mode analysis of protein dynamics. Curr. Opin. Struct. Biol. 4: 285–290.

    Article  CAS  Google Scholar 

  31. Hou, T., K. Chen, W. A. McLaughlin, B. Lu, and W. Wang (2006) Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput. Biol. 2: e1.

    Article  Google Scholar 

  32. Song, G., M. Zhou, W. Chen, T. Chen, B. Walker, and C. Shaw (2008) HV-BBI––a novel amphibian skin Bowman-Birk-like trypsin inhibitor. Biochem. Biophys. Res. Commun. 372: 191–196.

    Article  CAS  Google Scholar 

  33. Wang, M., L. Wang, T. Chen, B. Walker, M. Zhou, D. Sui, J. M. Conlon, and C. Shaw (2012) Identification and molecular cloning of a novel amphibian Bowman Birk-type trypsin inhibitor from the skin of the Hejiang Odorous Frog; Odorrana hejiangensis. Peptides 33: 245–250.

    Article  Google Scholar 

  34. Morris, S. R. and J. A. Sakanari (1994) Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J. Biol. Chem. 269: 27650–27656.

    CAS  Google Scholar 

  35. Pierce, B. G., K. Wiehe, H. Hwang, B. H. Kim, T. Vreven, and Z. Weng (2014) ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30: 1771–1773.

    Article  CAS  Google Scholar 

  36. Word, J. M., S. C. Lovell, T. H. LaBean, H. C. Taylor, M. E. Zalis, B. K. Presley, J. S. Richardson, and D. C. Richardson (1999) Visualizing and quantifying molecular goodness-of-fit: Small-probe contact dots with explicit hydrogen atoms. J. Mol. Biol. 285: 1711–1733.

    Article  CAS  Google Scholar 

  37. Stein, A. and P. Aloy (2008) Contextual specificity in peptidemediated protein interactions. PLoS ONE 3: e2524.

    Article  Google Scholar 

  38. Wallace, A. C., P. A. Laskowski, and J. M. Thornton (1995) LIGPLOT: A program to generate schematic diagrams of proteinligand interactions. Protein Eng. 8: 127–134.

    Article  CAS  Google Scholar 

  39. Moreira, I. S., P. A. Fernandes, and M. J. Ramos (2007) Computational alanine scanning mutagenesis––an improved methodological approach. J. Comput. Chem. 28: 644–654.

    Article  CAS  Google Scholar 

  40. Bi, J., H. Yang, H. Yan, R. Song, and J. Fan (2011) Knowledgebased virtual screening of HLA-A*0201-restricted CD8+ T-cell epitope peptides from herpes simplex virus genome. J. Theor. Biol. 281: 133–139.

    Article  CAS  Google Scholar 

  41. Xiang, Z. and B. Honig (2001) Extending the accuracy limits of prediction of side-chain conformations. J. Mol. Biol. 311: 421–430.

    Article  CAS  Google Scholar 

  42. Zhou, P., J. Huang, and F. Tian (2012) Specific noncovalent interactions at protein-ligand interface: Implications for rational drug design. Curr. Med. Chem. 19: 226–238.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Su.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, W., Zhu, W., Wang, Y. et al. Rational design and molecular engineering of peptide aptamers to target human pancreatic trypsin in acute pancreatitis. Biotechnol Bioproc E 21, 144–152 (2016). https://doi.org/10.1007/s12257-015-0638-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0638-3

Keywords