Skip to main content
Log in

Aldehydic nature and conformation of 3,6-anhydro-L-galactose monomer

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We investigated the aldehydic nature and conformation of 3,6-anhydro-L-galactose (L-AnG) by using enzymes that bind L-AnG in a reactive conformation. We found that L-AnG, but not L-galactose, can be oxidized by E. coli L-lactaldehyde dehydrogenase (Ec_LADH); this observation suggests that L-AnG is an aldehyde belonging to the a-hydroxyaldehyde family. Because the native enzyme that catalyzes oxidation of L-AnG to its carboxylate is LAnG dehydrogenase (L-AnGDH), we compared the crystal structure and amino-acid sequences of Ec_LADH with those of L-AnGDHs. This analysis revealed that the two oxygen atoms in the a-hydroxyaldehyde moiety of L-AnG are essential for the reactions of Ec_LADH and LAnGDHs. A chemical database search indicated that two configurations of L-AnG are possible: a trans arrangement in which C-2 and C-5 hydroxyl groups are on the opposite side and a cis arrangement in which these groups are on the same side. Manual docking of the two forms of L-AnG into the active site of Pseudoalteromonas atlantica LAnGDH (Pa_L-AnGDH) revealed that only the trans LAnG configuration can be fitted into the active site of Pa_L-AnGDH. The identification of trans L-AnG suggests the existence of three L-AnG conformations: bicyclic pyranose, opened pyranose, and open-chain aldehyde. The conformation of L-AnG monomer (open-chain aldehyde) differs from that in agarose (bicyclic pyranose) or agarobiose (opened pyranose) because a five-membered anhydro ring is free to move and can find its most stable conformation. This study validates the assumption of trans-type open-chain aldehyde conformation of L-AnG that was applied in our previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hwang, H. J., S. Y. Lee, S. M. Kim, and S. B. Lee (2011) Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol. Bioprocess Eng. 16: 1231–1239.

    Article  CAS  Google Scholar 

  2. Cole, K. M. and R. G. Sheath (1990) Biology of the Red Algae. Cambridge University Press, N. Y.

    Google Scholar 

  3. Meinita, M. D. N., B. Marhaeni, T. Winanto, G. T. Jeong, M. N. A. Khan, and Y. K. Hong (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J. Appl. Phycol. 25: 1957–1961.

    Article  CAS  Google Scholar 

  4. Park, J. H., J. Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. J. Yoon, and Y. J. Kim (2012) Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 93–88.

    Article  Google Scholar 

  5. Kumar, S., R. Gupta, G. Kumar, D. Sahoo, and R. C. Kuhad (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135: 150–156.

    Article  CAS  Google Scholar 

  6. Lee, S. B., S. J. Cho, J. A. Kim, S. Y. Lee, S. M. Kim, and H. S. Lim (2014) Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioprocess Eng. 19: 866–878.

    Article  CAS  Google Scholar 

  7. Cho, S. J. and S. B. Lee (2014) Identification and characterization of 3,6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. Biotechnol. Bioprocess Eng. 19: 1058–1068.

    Article  CAS  Google Scholar 

  8. Cho, S. J., J. A. Kim, and S. B. Lee (2015) Identification and characterization of 3,6-anhydro-L-galactonate cyloisomerase belonging to the enolase superfamily. Biotechnol. Bioprocess Eng. 20: 462–472.

    Article  CAS  Google Scholar 

  9. Lee, S. B. (2015) Unusual metabolism of 3,6-anhydro-L-galactose in Vibrio sp. EJY3 and in E. coli containing two Vibrio sp. EJY3 genes. Biotechnol. Bioprocess Eng. 20: 714–717.

    Article  CAS  Google Scholar 

  10. Lee, D. H., S. J. Cho, S. M. Kim, and S. B. Lee (2012) Postechiella marina gen. nov., sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 62: 1528–1535.

    Article  CAS  Google Scholar 

  11. Araki, C. (1956) Structure of the agarose constituent of agar-agar. Bull. Chem. Soc. Japan 29: 543–544.

    Article  CAS  Google Scholar 

  12. Hands, S. and S. Peat (1938) Isolation of an anhydro l-galactose derivative from agar. Nature 142: 797–797.

    Article  CAS  Google Scholar 

  13. Percival, E. G. V., J. C. Somerville and I. A. Forbes (1938) Isolation of an anhydro-sugar derivative from agar. Nature 142: 797–798.

    Article  CAS  Google Scholar 

  14. Percival, E. G. V. and I. A. Forbes (1938) 3:6-Anhydro-l-galactose in agar. Nature 142: 1076–1076.

    Article  CAS  Google Scholar 

  15. Ducatti, D. R., A. Massi, M. D. Noseda, M. E. Duarte, and A. Dondoni (2009) Production of carbohydrate building blocks from red seaweed polysaccharides. Efficient conversion of galactans into C-glycosyl aldehydes. Org. Biomol. Chem. 7: 576–588.

    Article  CAS  Google Scholar 

  16. Zagalak, B., P. A. Frey, G. L. Karabatsos, and R. H. Abeles (1966) The stereochemistry of the conversion of D and L 1,2-propanediols to propionaldehyde. J. Biol. Chem. 241: 3028–3035.

    CAS  Google Scholar 

  17. Green, M. R. and J. Sambrook (2012) Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,USA.

    Google Scholar 

  18. Trott, O. and A. J. Olson (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455–461.

    CAS  Google Scholar 

  19. Araki, C. and S. Hirase (1953) Studies on chemical constitution of agar-agar. XV. Exhaustive mercaptolyses of agar-agar. Bull. Chem. Soc. Japan 26: 463–467.

    Article  CAS  Google Scholar 

  20. Haworth, W. N., J. Jackson and F. Smith (1940) The properties of 3: 6-anhydrogalactose. J. Chem. Soc. 620–632.

    Google Scholar 

  21. Gillbert, J. and S. Martin (2011) Experimental Organic Chemistry: A Miniscale and Microscale Approach. 5th ed. Cengage Learning, Boston, USA.

    Google Scholar 

  22. Ratnani, S. and S. Gurjar (2012) Experimental Organic Chemistry. PHI Learning, New Delhi, India.

    Google Scholar 

  23. Baldomà, L. and J. Aguilar (1987) Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. J. Biol. Chem. 262:13991–13996.

    Google Scholar 

  24. Di Costanzo, L., G. A. Gomez, and D. W. Christianson (2007) Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. J. Mol. Biol. 366: 481–493.

    Article  Google Scholar 

  25. Zheng, H., A. Beliavsky, A. Tchigvintsev, J. S. Brunzelle, G. Brown, R. Flick, E. Evdokimova, Z. Wawrzak, R. Mahadevan, W. F. Anderson, A. Savchenko, and A. F. Yakunin (2013) Structure and activity of the NAD(P)+-dependent succinate semialdehyde dehydrogenase YneI from Salmonella typhimurium. Proteins 81: 1031–1041.

    Article  CAS  Google Scholar 

  26. Perozich, J., H. Nicholas, B. C. Wang, R. Lindahl, and J. Hempel (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci. 8: 137–146.

    Article  CAS  Google Scholar 

  27. Araki, C. and S. Hirase (1960) Studies on the chemical constituent of agar-agar. XXII. Partial methanolysis of methylated agarose of Gelidium amansii. Bull. Chem. Soc. Japan 33: 597–600.

    Article  CAS  Google Scholar 

  28. Hamer, G. K., S. S. Bhattacharjee, and W. Yaphe (1977) Analysis of the enzymic hydrolysis products of agarose by 13C-n.m.r. spectroscopy. Carbohydr. Res. 54: C7-C10.

  29. Rochas, C., P. Potin, and B. Kloareg (1994) NMR spectroscopic investigation of agarose oligomers produced by an α-agarase. Carbohydr. Res. 253: 69–77.

    Article  CAS  Google Scholar 

  30. Navarro, D. A. and C. A. Stortz (2008) DFT/MM modeling of the five-membered ring in 3,6-anhydrogalactose derivatives and its influence on disaccharide adiabatic maps. Carbohydr. Res. 343: 2292–2298.

    Article  CAS  Google Scholar 

  31. Yun, E., I.-G. Choi, and K. H. Kim (2015) Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol. 33: 247–249.

    Article  CAS  Google Scholar 

  32. Chi, W. J., Y. K. Chang, and S. K. Hong (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917–930.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Bok Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.B., Lee, S.Y. & Lim, H.S. Aldehydic nature and conformation of 3,6-anhydro-L-galactose monomer. Biotechnol Bioproc E 20, 878–886 (2015). https://doi.org/10.1007/s12257-015-0520-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0520-3

Keywords