Abstract
We investigated the aldehydic nature and conformation of 3,6-anhydro-L-galactose (L-AnG) by using enzymes that bind L-AnG in a reactive conformation. We found that L-AnG, but not L-galactose, can be oxidized by E. coli L-lactaldehyde dehydrogenase (Ec_LADH); this observation suggests that L-AnG is an aldehyde belonging to the a-hydroxyaldehyde family. Because the native enzyme that catalyzes oxidation of L-AnG to its carboxylate is LAnG dehydrogenase (L-AnGDH), we compared the crystal structure and amino-acid sequences of Ec_LADH with those of L-AnGDHs. This analysis revealed that the two oxygen atoms in the a-hydroxyaldehyde moiety of L-AnG are essential for the reactions of Ec_LADH and LAnGDHs. A chemical database search indicated that two configurations of L-AnG are possible: a trans arrangement in which C-2 and C-5 hydroxyl groups are on the opposite side and a cis arrangement in which these groups are on the same side. Manual docking of the two forms of L-AnG into the active site of Pseudoalteromonas atlantica LAnGDH (Pa_L-AnGDH) revealed that only the trans LAnG configuration can be fitted into the active site of Pa_L-AnGDH. The identification of trans L-AnG suggests the existence of three L-AnG conformations: bicyclic pyranose, opened pyranose, and open-chain aldehyde. The conformation of L-AnG monomer (open-chain aldehyde) differs from that in agarose (bicyclic pyranose) or agarobiose (opened pyranose) because a five-membered anhydro ring is free to move and can find its most stable conformation. This study validates the assumption of trans-type open-chain aldehyde conformation of L-AnG that was applied in our previous studies.
Similar content being viewed by others
References
Hwang, H. J., S. Y. Lee, S. M. Kim, and S. B. Lee (2011) Fermentation of seaweed sugars by Lactobacillus species and the potential of seaweed as a biomass feedstock. Biotechnol. Bioprocess Eng. 16: 1231–1239.
Cole, K. M. and R. G. Sheath (1990) Biology of the Red Algae. Cambridge University Press, N. Y.
Meinita, M. D. N., B. Marhaeni, T. Winanto, G. T. Jeong, M. N. A. Khan, and Y. K. Hong (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol production. J. Appl. Phycol. 25: 1957–1961.
Park, J. H., J. Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. J. Yoon, and Y. J. Kim (2012) Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 93–88.
Kumar, S., R. Gupta, G. Kumar, D. Sahoo, and R. C. Kuhad (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresour. Technol. 135: 150–156.
Lee, S. B., S. J. Cho, J. A. Kim, S. Y. Lee, S. M. Kim, and H. S. Lim (2014) Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioprocess Eng. 19: 866–878.
Cho, S. J. and S. B. Lee (2014) Identification and characterization of 3,6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. Biotechnol. Bioprocess Eng. 19: 1058–1068.
Cho, S. J., J. A. Kim, and S. B. Lee (2015) Identification and characterization of 3,6-anhydro-L-galactonate cyloisomerase belonging to the enolase superfamily. Biotechnol. Bioprocess Eng. 20: 462–472.
Lee, S. B. (2015) Unusual metabolism of 3,6-anhydro-L-galactose in Vibrio sp. EJY3 and in E. coli containing two Vibrio sp. EJY3 genes. Biotechnol. Bioprocess Eng. 20: 714–717.
Lee, D. H., S. J. Cho, S. M. Kim, and S. B. Lee (2012) Postechiella marina gen. nov., sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 62: 1528–1535.
Araki, C. (1956) Structure of the agarose constituent of agar-agar. Bull. Chem. Soc. Japan 29: 543–544.
Hands, S. and S. Peat (1938) Isolation of an anhydro l-galactose derivative from agar. Nature 142: 797–797.
Percival, E. G. V., J. C. Somerville and I. A. Forbes (1938) Isolation of an anhydro-sugar derivative from agar. Nature 142: 797–798.
Percival, E. G. V. and I. A. Forbes (1938) 3:6-Anhydro-l-galactose in agar. Nature 142: 1076–1076.
Ducatti, D. R., A. Massi, M. D. Noseda, M. E. Duarte, and A. Dondoni (2009) Production of carbohydrate building blocks from red seaweed polysaccharides. Efficient conversion of galactans into C-glycosyl aldehydes. Org. Biomol. Chem. 7: 576–588.
Zagalak, B., P. A. Frey, G. L. Karabatsos, and R. H. Abeles (1966) The stereochemistry of the conversion of D and L 1,2-propanediols to propionaldehyde. J. Biol. Chem. 241: 3028–3035.
Green, M. R. and J. Sambrook (2012) Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,USA.
Trott, O. and A. J. Olson (2010) AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455–461.
Araki, C. and S. Hirase (1953) Studies on chemical constitution of agar-agar. XV. Exhaustive mercaptolyses of agar-agar. Bull. Chem. Soc. Japan 26: 463–467.
Haworth, W. N., J. Jackson and F. Smith (1940) The properties of 3: 6-anhydrogalactose. J. Chem. Soc. 620–632.
Gillbert, J. and S. Martin (2011) Experimental Organic Chemistry: A Miniscale and Microscale Approach. 5th ed. Cengage Learning, Boston, USA.
Ratnani, S. and S. Gurjar (2012) Experimental Organic Chemistry. PHI Learning, New Delhi, India.
Baldomà, L. and J. Aguilar (1987) Involvement of lactaldehyde dehydrogenase in several metabolic pathways of Escherichia coli K12. J. Biol. Chem. 262:13991–13996.
Di Costanzo, L., G. A. Gomez, and D. W. Christianson (2007) Crystal structure of lactaldehyde dehydrogenase from Escherichia coli and inferences regarding substrate and cofactor specificity. J. Mol. Biol. 366: 481–493.
Zheng, H., A. Beliavsky, A. Tchigvintsev, J. S. Brunzelle, G. Brown, R. Flick, E. Evdokimova, Z. Wawrzak, R. Mahadevan, W. F. Anderson, A. Savchenko, and A. F. Yakunin (2013) Structure and activity of the NAD(P)+-dependent succinate semialdehyde dehydrogenase YneI from Salmonella typhimurium. Proteins 81: 1031–1041.
Perozich, J., H. Nicholas, B. C. Wang, R. Lindahl, and J. Hempel (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci. 8: 137–146.
Araki, C. and S. Hirase (1960) Studies on the chemical constituent of agar-agar. XXII. Partial methanolysis of methylated agarose of Gelidium amansii. Bull. Chem. Soc. Japan 33: 597–600.
Hamer, G. K., S. S. Bhattacharjee, and W. Yaphe (1977) Analysis of the enzymic hydrolysis products of agarose by 13C-n.m.r. spectroscopy. Carbohydr. Res. 54: C7-C10.
Rochas, C., P. Potin, and B. Kloareg (1994) NMR spectroscopic investigation of agarose oligomers produced by an α-agarase. Carbohydr. Res. 253: 69–77.
Navarro, D. A. and C. A. Stortz (2008) DFT/MM modeling of the five-membered ring in 3,6-anhydrogalactose derivatives and its influence on disaccharide adiabatic maps. Carbohydr. Res. 343: 2292–2298.
Yun, E., I.-G. Choi, and K. H. Kim (2015) Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol. 33: 247–249.
Chi, W. J., Y. K. Chang, and S. K. Hong (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917–930.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, S.B., Lee, S.Y. & Lim, H.S. Aldehydic nature and conformation of 3,6-anhydro-L-galactose monomer. Biotechnol Bioproc E 20, 878–886 (2015). https://doi.org/10.1007/s12257-015-0520-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12257-015-0520-3

