Skip to main content
Log in

Ultrasonication as a rapid and high yield DNA extraction method for bacterial gene quantification by NanoGene assay

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We demonstrated ultrasonication as a rapid and high yield DNA extraction method suitable for bacterial gene quantification by NanoGene assay. The NanoGene assay utilizes DNA hybridization in solution and a combination of magnetic beads and quantum dot nanoparticles. Unlike the existing gene quantification assays, the NanoGene method is capable of quantifying genes in the presence of environmental inhibitors and cell materials. The performance of the ultrasonication was compared with heating and freeze-thaw. They first were evaluated for their cell lysis capability in humic acids laden sand samples, via EtBr assay. Using autoclaved samples as a bench mark, their cell lysis capability were 106 ± 3, 68 ± 5, and 48 ± 15%, respectively. Morphological changes of cells for each method were also observed by FE-SEM. More importantly, ultrasonication performed significantly better (more than 3× fluorescence signal) than commercial DNA extraction methods during bacterial gene quantification in humic acids laden sand samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, G., F. Q. Ling, A. Magic-Knezev, W. T. Liu, J. Q. J. C. Verberk, and J. C. Van Dijk (2013) Quantification and identification of particle-associated bacteria in unchlorinated drinking water from three treatment plants by cultivation-independent methods. Water Res. 47: 3523–3533.

    Article  CAS  Google Scholar 

  2. Harms, G., A. C. Layton, H. M. Dionisi, I. R. Gregory, V. M. Garrett, S. A. Hawkins, K. G. Robinson, and G. S. Sayler (2002) Real-time PCR quantification of nitrifying nacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343–351.

    Article  Google Scholar 

  3. El Fantroussi, S. and S. N. Agathos (2005) Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 8: 268–275.

    Article  CAS  Google Scholar 

  4. Kao, C. -M., C. S. Chen, F. -Y. Tsa, K. -H. Yang, C. -C. Chien, S. -H. Liang, C. -A. Yang, and S. C. Chen (2010) Application of realtime PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control of petroleum-hydrocarbon plume. J. Hazard. Mater. 178: 409–416.

    Article  CAS  Google Scholar 

  5. Chon, K., J. -S. Chang, E. Lee, J. Lee, J. Ryu, and J. Cho (2011) Abundance of denitrifying genes coding for nitrate (narG), nitrite (nirS), and nitrous oxide (nosZ) reductases in estuarine versus wastewater effluent-fed constructed wetlands. Ecol. Eng. 37: 64–69.

    Article  Google Scholar 

  6. Sims, A., J. Horton, S. Gajaraj, S. McIntosh, R. J. Miles, R. Mueller, R. Reed, and Z. Hu (2012) Temporal and spatial distributions of ammonia-oxidizing archaea and bacteria and their ratio as an indicator of oligotrophic conditions in natural wetlands. Water Res. 46: 4121–4129.

    Article  CAS  Google Scholar 

  7. Looper, J. K., A. Cotto, B. -Y. Kim, M. -K. Lee, M. R. Liles, S. M. N. Chadhainf, and A. Son (2013) Microbial community analysis of Deepwater Horizon oil-spill impacted sites along the Gulf coast using functional and phylogenetic markers. Environ. Sci. Proc. Impact. 15: 2068–2079.

    Article  CAS  Google Scholar 

  8. Kim, G. -Y. and A. Son (2010) Development and characterization of a magnetic bead-quantum dot nanoparticles based assay capable of Escherichia coli O157:H7 quantification. Anal. Chim. Act. 677: 90–96.

    Article  CAS  Google Scholar 

  9. Lee, S. Y., J. Bollinger, D. Bezdicek, and A. Ogram (1996) Estimation of the abundance of an uncultured soil bacterial strain by a competitive quantitative PCR method. Appl. Environ. Microbiol. 62: 3787–3793.

    CAS  Google Scholar 

  10. Mumy, K. L. and R. H. Findlay (2004) Convenient determination of DNA extraction efficiency using an external DNA recovery standard and quantitative-competitive PCR. J. Microbiol. Meth. 57: 259–268.

    Article  CAS  Google Scholar 

  11. Peršoh, D., S. Theuerl, F. Buscot, and G. Rambold (2008) Towards a universally adaptable method for quantitative extraction of high-purity nucleic acids from soil. J. Microbiol. Meth. 75: 19–24.

    Article  Google Scholar 

  12. Kuske, C. R., K. L. Banton, D. L. Adorada, P. C. Stark, K. K. Hill, and P. J. Jackson (1998) Small-scale DNA sample preparation method for field PCR detection of microbial cells and spores in soil. Appl. Environ. Microbiol. 64: 2463–2472.

    CAS  Google Scholar 

  13. Lakay, F. M., A. Botha, and B. A. Prior (2007) Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. J. Appl. Microbiol. 102: 265–273.

    Article  CAS  Google Scholar 

  14. Miller, D. N., J. E. Bryant, E. L. Madsen, and W. C. Ghiorse (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl. Environ. Microbiol. 65: 4715–4724.

    CAS  Google Scholar 

  15. Howeler, M., W. C. Ghiorse, and L. P. Walker (2003) A quantitative analysis of DNA extraction and purification from compost. J. Microbiol. Meth. 54: 37–45.

    Article  CAS  Google Scholar 

  16. Robe, P., R. Nalin, C. Capellano, T. M. Vogel, and P. Simonet (2003) Extraction of DNA from soil. Eur. J. Soil. Sci. 39: 183–190.

    CAS  Google Scholar 

  17. Zhou, J., M. A. Bruns, and J. M. Tiedje (1996) DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316–322.

    CAS  Google Scholar 

  18. Moré, M. I., J. B. Herrick, M. C. Silva, W. C. Ghiorse, and E. L. Madsen (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl. Environ. Microbiol. 60: 1572–1580.

    Google Scholar 

  19. Parachin, N., J. Schelin, B. Norling, P. Rådström, and M. Gorwa-Grauslund (2010) Flotation as a tool for indirect DNA extraction from soil. Appl. Microbiol. Biotechnol. 87: 1927–1933.

    Article  CAS  Google Scholar 

  20. Steffan, R. J., J. Goksoyr, A. K. Bej, and R. M. Atlas (1988) Recovery of DNA from soils and sediments. Appl. Environ. Microbiol. 54: 2908–2915.

    CAS  Google Scholar 

  21. Tsai, Y. L. and B. H. Olson (1992) Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl. Environ. Microbiol. 58: 754–757.

    CAS  Google Scholar 

  22. Mitchell, K., B. Chua, and A. Son (2014) Development of first generation in-situ pathogen detection system (Gen1-IPDS) based on NanoGene assay for near real time E. coli O157:H7 detection. Biosens. Bioelectronics. 54: 229–236.

    Article  CAS  Google Scholar 

  23. Cébron, A., M.-P. Norini, T. Beguiristain, and C. Leyval (2008) Real-time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDα) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J. Microbiol. Methods. 73: 148–159.

    Article  Google Scholar 

  24. Wang, X., B. -T. Lee, and A. Son (2014) Physical lysis only (PLO) methods suitable as rapid sample pretreatment for qPCR assay. Appl. Microbiol. Biotechnol. 98: 8719–8728.

    Article  CAS  Google Scholar 

  25. Rodrigues, L., J. Ramos, I. Couto, L. Amaral, and M. Viveiros (2011) Ethidium bromide transport across Mycobacterium smegmatis cell-wall: Correlation with antibiotic resistance. BMC Microbiol. 11.

    Google Scholar 

  26. Dragan, A. I., E. S. Bishop, R. J. Strouse, J. R. Casas-Finet, M. A. Schenerman, and C. D. Geddes (2009) Metal-enhanced ethidium bromide emission: Application to dsDNA detection. Chem. Phys. Lett. 480: 296–299.

    Article  CAS  Google Scholar 

  27. Olmsted, J. I. and D. R. Kearns (1977) Mechanism of ethidium bromide fluorescence enhancement on bing to nucleic acids. Biochem. 16: 3647–3654.

    Article  CAS  Google Scholar 

  28. Waring, M. J. (1965) Complex formation between ethidium bromide and nucleic acids. J. Mol. Biol. 13: 269–282.

    Article  CAS  Google Scholar 

  29. Brum, M. C. and J. F. Oliveira (2007) Removal of humic acid from water by precipitate flotation using cationic surfactants. Miner Eng. 20: 945–949.

    Article  CAS  Google Scholar 

  30. Bapat, B. S., P. R. Gogate, and A. B. Pandit (2008) Theoretical analysis of sonochemical degradation of phenol and its chloroderivatives. Ultrason. Sonochem. 15: 564–570.

    Article  CAS  Google Scholar 

  31. Chowdhury, P. and T. Viraraghavan (2009) Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes -a review. Sci. Total. Environ. 407: 2472–2492.

    Google Scholar 

  32. Im, J. -K., L. K. Boateng, J. R. V. Flora, N. Her, K. -D. Zoh, A. Son, and Y. Yoon (2014) Enhanced ultrasonic degradation of acetaminophen and naproxen in the presence of powered activated carbon and biochar adsorbents. Sep. Purif. Technol. 123: 96–106.

    Article  CAS  Google Scholar 

  33. Wang, Y. F., D. Zhao, W. H. Ma, C. C. Chen, and J. C. Zhao (2008) Enhanced sonocatalytic degradation of azo dyes by Au/TiO2. Environ. Sci. Technol. 42: 6173–6178.

    Article  CAS  Google Scholar 

  34. Loza, V., E. Perona, and P. Mateo (2013) Molecular fingerprinting of cyanobacteria from river biofilms as a water quality monitoring tool. Appl. Environ. Microbiol. 79: 1459–1472.

    Article  CAS  Google Scholar 

  35. de Lipthay, J. R., C. Enzinger, K. Johnsen, J. Aamand, and S. J. Sørensen (2004) Impact of DNA extraction method on bacterial community composition measured by denaturing gradient gel electrophoresis. Soil Biol. Biochem. 36: 1607–1614.

    Article  Google Scholar 

  36. Krsek, M. and E. M. H. Wellington (1999) Comparison of different methods for the isolation and purification of total community DNA from soil. J. Microbiol. Meth. 39: 1–16.

    Article  CAS  Google Scholar 

  37. Frostegård, Å., S. Courtois, V. Ramisse, S. Clerc, D. Bernillon, F. Le Gall, P. Jeannin, X. Nesme, and P. Simonet (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl. Environ. Microbiol. 65: 5409–5420.

    Google Scholar 

  38. Westergaard, K., A. K. Müller, S. Christensen, J. Bloem, and S. J. Sørensen (2001) Effects of tylosin as a disturbance on the soil microbial community. Soil Biol. Biochem. 33: 2061–2071.

    Article  CAS  Google Scholar 

  39. Esteban, J., N. Alonso-Rodriguez, G. del-Prado, A. Ortiz-Pérez, D. Molina-Manso, J. Cordero-Ampuero, E. Sandoval, R. Fernández-Roblas, and E. Gómez-Barrena (2012) PCR-hybridization after sonication improves diagnosis of implant-related infection. Acta Orthop. 83: 299–304.

    Article  Google Scholar 

  40. Bollet, C., M. J. Gevaudan, X. de Lamballerie, C. Zandotti, and P. de Micco (1991) A simple method for the isolation of chromosomal DNA from Gram positive or acid-fast bacteria. Nucleic Acids Res. 19: 1955.

    Article  CAS  Google Scholar 

  41. Ahmed, O. B., A. H. Asghar, and M. M. Elhassan (2014) Comparison of three DNA extraction methods for polymearase chain reaction (PCR) analysis of bacterial genomic DNA. Afr. J. Microbiol. Res. 8: 598–602.

    Article  Google Scholar 

  42. Tsai, Y. L. and B. H. Olson (1991) Rapid method for direct extraction of DNA from soil and sediments. Appl. Environ. Microbiol. 57: 1070–1074.

    CAS  Google Scholar 

  43. Chen, N. T. and C. W. Chang (2012) Quantification of Legionella pneumophila by real-time quantitative PCR from samples with humic acid and ferric ion. Sci. Total Environ. 414: 608–613.

    Article  CAS  Google Scholar 

  44. Wang, X. and A. Son (2013) Effects of pretreatment on the denaturation and fragmentation of genomic DNA for DNA hybridization. Environ. Sci. Proc. Impact. 15: 2204–2212.

    Article  CAS  Google Scholar 

  45. Brautigam, A. R., D. D. Richman, and M. N. Oxman (1980) Rapid typing of herpes simplex virus isolates by deoxyribonucleic acid: Deoxyribonucleic acid hybridization. J. Clin. Microbiol. 12: 226–234.

    CAS  Google Scholar 

  46. Tebbe, C. C. and W. Vahjen (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 59: 2657–2665.

    CAS  Google Scholar 

  47. Wilson, I. (1997) Inhibition and facilitation of nucleic acid amplification. Appl. Environ. Microbiol. 63: 3741–3751.

    CAS  Google Scholar 

  48. Wang, X., M. R. Liles, and A. Son (2013) Quantification of E. coli O157:H7 in soils using an inhibitor-resistant NanoGene assay. Soil Biol. Biochem. 58: 9–15.

    Article  CAS  Google Scholar 

  49. Kim, G. -Y., X. Wang, and A. Son (2011) Inhibitor resistance and in situ capability of nanoparticle based gene quantification. J. Environ. Monitor. 13: 1344–1350.

    Article  CAS  Google Scholar 

  50. Kim, G. -Y., X. Wang, H. Ahn, and A. Son (2011) Gene quantification by the NanoGene assay is resistant to inhibition by humic acids. Environ. Sci. Technol. 45: 8873–8880.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahjeong Son.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Cho, KS. & Son, A. Ultrasonication as a rapid and high yield DNA extraction method for bacterial gene quantification by NanoGene assay. Biotechnol Bioproc E 20, 1133–1140 (2015). https://doi.org/10.1007/s12257-015-0465-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0465-6

Keywords

Navigation