Skip to main content
Log in

Unusual metabolism of 3,6-anhydro-L-galactose in Vibrio sp. EJY3 and in E. coli containing two Vibrio sp. EJY3 genes

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently, Yun et al. [Envron. Microbiol. 17: 1677-1688 (2015)] proposed a metabolic pathway of 3,6- anhydro-L-galactose (L-AnG) in Vibrio sp. EJY3. The sequence of Yun’s pathway is 3,6-anhydro-L-galactose → 3,6-anhydro-galactonate → 2-keto-3-deoxy-galactonate → DeLey—Doudoroff pathway. This pathway differs significantly from one that has been established by Lee et al. [Biotechnol. Bioproc. Eng. 19: 866-878 (2014)], and which has been detected in agar-degrading bacteria such as Postechiella marina M091, Pseudoalteromonas atlantica T6c, and Streptomyces coelicolor A3(2). The sequence of Lee’s pathway is 3,6-anhydro-L-galactose → 3,6-anhydro-Lgalactonate → 2-keto-3-deoxy-L-galactonate → 2,5-diketo- 3-deoxy-L-galactonate → 2-keto-3-deoxy-D-gluconate → 2-keto-3-deoxy-6-phospho-D-gluconate → pyruvate + Dglyceraldehyde- 3-phosphate. Because Yun’s L-AnG pathway is connected to the DeLey—Doudoroff pathway and 2-keto- 3-deoxy-D-galactonate (D-KDGal) is an intermediate in the DeLey—Doudoroff pathway, the 2-keto-3-deoxy-galactonate in the Yun’s pathway must be D-KDGal. On the contrary, Lee et al. showed that the product of the reaction catalyzed by the second-step enzyme is 2-keto-3-deoxy-L-galactonate (L-KDGal). The E. coli genome contains the genes that enable conversion of D-KDGal to glycolysis intermediates via the DeLey—Doudoroff pathway. However, if the reaction product of the second-step enzyme is L-KDGal, additional genes are required for the conversion of L-KDGal to glycolysis intermediates. Here I argue that the validity of the following claims by Yun et al. is very questionable: (1) the formation of D-KDGal during the metabolism of L-AnG in Vibrio sp. EJY3 and (2) the production of ethanol from L-AnG using the DeLey—Doudoroff pathway in E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, S. B., S. J. Cho, J. A. Kim, S. Y. Lee, S. M. Kim, and H. S. Lim (2014) Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioproc. Eng. 19: 866–878.

    Article  CAS  Google Scholar 

  2. Cho, S. J. and S. B. Lee (2014) Identification and characterization of 3,6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. Biotechnol. Bioproc. Eng. 19: 1058–1068.

    Article  CAS  Google Scholar 

  3. Cho, S. J., J. A. Kim, and S. B. Lee (2015) Identification and characterization of 3,6-anhydro-L-galactonate cyloisomerase belonging to the enolase superfamily. Biotechnol. Bioproc. Eng. 20: 462–472.

    Article  CAS  Google Scholar 

  4. Yun, E. J., S. Lee, H. T. Kim, J. G. Pelton, S. Kim, H. J. Ko, I. G. Choi, and K. H. Kim (2015) The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Environ. Microbiol. 17: 1677–1688.

    Article  CAS  Google Scholar 

  5. De Ley, J. and M. Doudoroff (1957) The metabolism of D-galactose in Pseudomonas saccharophila. J. Biol. Chem. 227: 745–757.

    Google Scholar 

  6. Perozich J., H. Nicholas, B. C. Wang, R. Lindahl, and J. Hempel (1999) Relationships within the aldehyde dehydrogenase extended family. Protein Sci. 8: 137–146.

    Article  CAS  Google Scholar 

  7. Nickolas, A. S. and V. Vasiliou (2003) Aldehyde dehydrogenase gene superfamily: The 2002 update. Chem. Biol. Interact. 143–144: 5–22.

    Google Scholar 

  8. Gerlt, J. A., P. C. Babbitt, M. P. Jacobson, and S. C. Almo (2012) Divergent evolution in the enolase superfamily: Strategies for assigning function. J. Biol. Chem. 287: 29–34.

    Article  CAS  Google Scholar 

  9. Lee, D. H., S. J. Cho, S. M. Kim, and S. B. Lee (2012) Postechiella marina gen. nov., sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 62: 1528–1535.

    Article  CAS  Google Scholar 

  10. Haworth, W. N., J. Jackson, and F. Smith (1940) The properties of 3:6-anhydrogalactose. J. Chem. Soc. 620–632.

    Google Scholar 

  11. Wilson, C. A., J. Kreychman, and M. Gerstein (2000) Assessing annotation transfer for genomics: Quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J. Mol. Biol. 297: 233–249.

    Article  CAS  Google Scholar 

  12. Tian, W. and J. Skolnick (2003) How well is enzyme function conserved as a function of pairwise sequence identity? J. Mol. Biol. 333: 863–882.

    Article  CAS  Google Scholar 

  13. Yun, E. J., I. G. Choi, and K. H. Kim (2015) Red macroalgae as a sustainable resource for bio-based products. Trends Biotechnol. 33: 247–249.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Bok Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.B. Unusual metabolism of 3,6-anhydro-L-galactose in Vibrio sp. EJY3 and in E. coli containing two Vibrio sp. EJY3 genes. Biotechnol Bioproc E 20, 714–717 (2015). https://doi.org/10.1007/s12257-015-0440-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0440-2

Keywords

Navigation