Skip to main content

Dissimilatory azoreduction of Orange I by a newly isolated moderately thermophilic bacterium, Novibacillus thermophilus SG-1


Dye wastewater normally is discharged at high temperature, but thermophilic bacteria capable of decolorizing azo dyes have rarely been isolated. Here we report a newly isolated moderately thermophilic bacterium, Novibacillus thermophilus SG-1, which had a remarkable ability to decolorize the azo dye Orange I by utilizing a large variety of organic substrates as electron donors. When Orange I served as the sole electron acceptor, almost complete decolorization occurred at 50ºC and pH 8.0 with acetate as the electron donor after anaerobic incubation of strain SG-1 for 24 h. The decolorization process followed the pseudofirst- order kinetics. The complete reduction of 0.3 mM Orange I was accompanied by a stoichiometric consumption of 0.17 mM acetate over time. The measured molar ratio (1.76) of Orange I reduced to acetate oxidized was close to the theory value of 2.0, suggesting that most of the electrons released by acetate had been transported to Orange I. Simultaneously energy generated from the electron transfer process was used to support cell anaerobic growth, which meant that azoreduction by strain SG-1 is an azorespiration process. To our knowledge, this is the first report of a thermophilic bacterium capable of azorespiration, which increases the limited number of bacteria for treating hightemperature azo dye wastewater.

This is a preview of subscription content, access via your institution.


  1. 1.

    Pearcea, C. I., J. R. Lloydb, and J. T. Guthrie (2003) The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes Pigm. 58: 179–196.

    Article  CAS  Google Scholar 

  2. 2.

    Xu, M., J. Guo, X. Kong, X. Chen, and G. Sun (2007) Fe(III)-enhanced azo reduction by Shewanella decolorationis S12. Appl. Microbiol. Biotechnol. 74: 1342–1349.

    Article  CAS  Google Scholar 

  3. 3.

    Fernando, E., T. Keshavarz, and G. Kyazze (2014) Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. Bioresour. Technol. 156: 155–162.

    Article  CAS  Google Scholar 

  4. 4.

    Liao, C. S., C. H. Hung, and S. L. Chao (2013) Decolorization of azo dye reactive black B by Bacillus cereus strain HJ-1. Chemospher. 90: 2109–2114.

    Article  CAS  Google Scholar 

  5. 5.

    Robinson, T., G. McMullan, R. Marchant, and P. Nigam (2001) Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresour. Technol. 77: 247–255.

    Article  CAS  Google Scholar 

  6. 6.

    Taha, M., E. M. Adetutu, E. Shahsavari, A. T. Smith, and A. S. Ball (2014) Azo and anthraquinone dye mixture decolourization at elevated temperature and concentration by a newly isolated thermophilic fungus, Thermomucor indicae-seudaticae. J. Environ. Chem. Eng. 2: 415–423.

    Article  CAS  Google Scholar 

  7. 7.

    Zhang, Y. B., Y. W. Jing, J. X. Zhang, L. F. Sun, and X. Quan (2010) Performance of a ZVI-UASB reactor for azo dye wastewater treatment. J. Chem. Technol. Biotechnol. 86: 199–204.

    Article  CAS  Google Scholar 

  8. 8.

    Blumel, S., H. J. Knackmuss, and A. Stolz (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl. Environ. Microbiol. 68: 3948–3955.

    Article  CAS  Google Scholar 

  9. 9.

    Yan, B., J. Zhou, J. Wang, C. Du, H. Hou, Z. Song, and Y. Bao (2004) Expression and characteristics of the gene encoding azoreductase from Rhodobacter sphaeroides AS1.1737. FEMS Microbiol. Lett. 236: 129–136.

    Article  CAS  Google Scholar 

  10. 10.

    Misal, S. A., D. P. Lingojwar, R. M. Shinde, and K. R. Gawai (2011) Purification and characterization of azoreductase from alkaliphilic strain Bacillus badius. Proc. Biochem. 46: 1264–1269.

    Article  CAS  Google Scholar 

  11. 11.

    Hong, Y., J. Guo, Z. Xu, M. Xu, and G. Sun (2007) Humic substances act as electron acceptor and redox mediators for microbial dissimilatory azoreduction by Shewanella decolorationis S12. J. Microbiol. Biotechnol. 17: 428–437.

    CAS  Google Scholar 

  12. 12.

    Liu, G., J. Zhou, J. Wang, X. Wang, R. Jin, and H. Lv (2011) Decolorization of azo dyes by Shewanella oneidensis MR-1 in the presence of humic acids. Appl. Microbiol. Biotechnol. 91: 417–424.

    Article  CAS  Google Scholar 

  13. 13.

    Almeida, E. J. R. and C. R. Corso (2014) Comparative study of toxicity of azo dye Procion Red MX-5B following biosorption and biodegradation treatments with the fungi Aspergillus niger and Aspergillus terreus. Chemospher. 112: 317–322.

    Article  CAS  Google Scholar 

  14. 14.

    Shen, N., Y. C. Huo, J. J. Chen, F. Zhang, H. Zheng, and R. J. Zeng (2015) Decolorization by Caldicellulosiruptor saccharolyticus with dissolved hydrogen under extreme thermophilic conditions. Chem. Eng. J. 262: 847–853.

    Article  CAS  Google Scholar 

  15. 15.

    Solís, M., A. Solís, H. I. Pérez, N. Manjarrez, and M. Flores (2012) Microbial decolouration of azo dyes: A review. Proc. Biochem. 47: 1723–1748.

    Article  CAS  Google Scholar 

  16. 16.

    Kaushik, P. and A. Malik (2009) Fungal dye decolourization: Recent advances and future potential. Environ. Int. 35: 127–141.

    Article  CAS  Google Scholar 

  17. 17.

    Deivea, F. J., A. Domíngueza, T. Barrioa, F. Moscosoa, P. Moránb, M. A. Longoa, and M. A. Sanromán (2010) Decolorization of dye Reactive Black 5 by newly isolated thermophilic microorganisms from geothermal sites in Galicia (Spain). J. Hazard. Mater. 182: 735–742.

    Article  CAS  Google Scholar 

  18. 18.

    Chen, K. C., J. Y. Wu, D. J. Liou, and S. C. Hwang (2003) Decolorization of the textile dyes by newly isolated bacterial strains. J. Biotechnol. 101: 57–68.

    Article  CAS  Google Scholar 

  19. 19.

    Keck, A., J. Klein, M. Kudlich, A. Stolz, H. J. Knackmuss, and R. Mattes (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6. Appl. Environ. Microbiol. 63: 3684–3690.

    CAS  Google Scholar 

  20. 20.

    Ma, C., S. G. Zhou, Q. Lu, G. Q. Yang, D. M. Wang, L. Zhuang, F. B. Li, and F. M. Lei (2013) Decolorization of Orange I under alkaline and anaerobic conditions by a newly isolated humusreducing bacterium, Planococcus sp. MC01. Int. Biodeter. Biodegr. 83: 17–24.

    Article  CAS  Google Scholar 

  21. 21.

    Wang, H., J. Q. Su, X. W. Zheng, Y. Tian, X. J. Xiong, and T. L. Zheng (2009) Bacterial decolorization and degradation of the reactive dye Reactive Red 180 by Citrobacter sp. CK3. Int. Biodeter. Biodegr. 63: 395–399.

    Article  CAS  Google Scholar 

  22. 22.

    Yang, G. Q., J. H. Chen, and S. G. Zhou (2015) Novibacillus thermophilus gen. nov., sp. nov., a Gram-staining-negative and moderately thermophilic species within the family Thermoactinomycetaceae. Int. J. Syst. Evol. Microbiol. 65: 2591–2597.

    Article  CAS  Google Scholar 

  23. 23.

    Lovley, D. R. and E. J. P. Phillips (1988) Novel mode of microbial energy metabolism: Organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environ. Microbiol. 54: 1472–1480.

    CAS  Google Scholar 

  24. 24.

    Wu, C. Y., L. Zhuang, S. G. Zhou, F. B. Li, and X. M. Li (2010) Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiol. Ecol. 71: 106–113.

    Article  CAS  Google Scholar 

  25. 25.

    Yu, Z., J. L. Wen, G. Q. Yang, J. Liu, and S. G. Zhou (2015) Compostibacillus humi gen. nov., sp. nov., a member of the family Bacillaceae, isolated from sludge compost. Int. J. Syst. Evol. Microbiol. 65: 346–352.

    Article  CAS  Google Scholar 

  26. 26.

    Aksu, Z. (2003) Reactive dye bioaccumulation by Saccharomyces cerevisiae. Proc. Biochem. 38: 1437–1444.

    Article  CAS  Google Scholar 

  27. 27.

    Saratale, R.G., G. D. Saratale, J. S. Chang, and S. P. Govindwar (2011) Bacterial decolorization and degradation of azo dyes: A review. J. Taiwan Inst. Chem. E. 42: 138–157.

    Article  CAS  Google Scholar 

  28. 28.

    Chen, G., M. Huang, L. Chen, and D. Chen (2011) A batch decolorization and kinetic study of Reactive Black 5 by a bacterial strain Enterobacter sp. GY-1. Int. Biodeter. Biodegr. 65: 790–796.

    Article  CAS  Google Scholar 

  29. 29.

    Hong, Y., M. Xu, J. Guo, Z. Xu, X. Chen, and G. Sun (2007) Respiration and growth of Shewanella decolorationis S12 with an azo compound as the sole electron acceptor. Appl. Environ. Microbiol. 73: 64–72.

    Article  CAS  Google Scholar 

  30. 30.

    Hong, Y. and J. Gu (2009) Bacterial anaerobic respiration and electron transfer relevant to the biotransformation of pollutants. Int. Biodeter. Biodegr. 63: 973–980.

    Article  CAS  Google Scholar 

  31. 31.

    Hong, Y., J. Guo, and G. Sun (2009) Energy generation coupled to the azoreduction by the membranous vesicles from Shewanella decolorationis S12. J. Microbiol. Biotechnol. 19: 37–41.

    Article  CAS  Google Scholar 

  32. 32.

    Hong, Y. and J. Gu (2010) Physiology and biochemistry of reduction of azo compounds by Shewanella strains relevant to electron transport chain. Appl. Microbiol. Biotechnol. 88: 637–643.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Yueqiang Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Z., Zhou, X., Wang, Y. et al. Dissimilatory azoreduction of Orange I by a newly isolated moderately thermophilic bacterium, Novibacillus thermophilus SG-1. Biotechnol Bioproc E 20, 1064–1070 (2015).

Download citation


  • Novibacillus thermophilus
  • thermophilic bacterium
  • azo dye
  • dissimilatory azoreduction
  • decolorization