Skip to main content
Log in

Identification and characterization of 3,6-anhydro-L-galactonate cycloisomerase belonging to theenolase superfamily

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently, we have shown that Postechiella marina M091 degrades 3,6-anhydro-L-galactose (L-AnG) to pyruvate and D-glyceraldehyde-3-phosphate via six enzyme-catalyzed reactions and that the L-AnG dehydrogenase, an enzyme catalyzing the first step of L-AnG degradation, converts L-AnG to 3,6-anhydro-L-galactonate (L-AnGA). In this study, we report the identification and characterization of L-AnGA cycloisomerase (L-AnGACI), a novel enzyme that catalyzes the second step of L-AnG metabolism in agar-degrading microorganisms. To characterize this enzyme, the L-AnGACI gene (M091_0722) from P. marina (Pm_LAnGACI) was cloned and expressed in E. coli. The recombinant Pm_L-AnGACI catalyzed conversion of LAnGA to 2-keto-3-deoxy-L-galactonate (L-KDGal), which was confirmed by the L-KDGal aldolase reaction and the LC-MS analysis of the aldolase reaction products. The enzyme showed activity only towards L-AnGA (100%) and galactarate (1.8%) among the 12 sugar acids and carboxylates tested, and the enzyme activity was maximal at 30°C and pH 8.0. Enzyme activity was enhanced by addition of divalent ions such as Co2+ and Mg2+, as is observed from enzymes of the enolase superfamily. L-AnGACI conserves several residues commonly found in the enolase superfamily, including three metal-ion binding ligands (Asp198, Glu224, Glu250) and five active-site residues (Lys167, Lys169, Asp273, His300, Glu320). Phylogenetic analysis of amino acid sequences indicates that Pm_L-AnGACI belongs to a novel family within the mandelate racemase subgroup of the enolase superfamily. A reaction mechanism for cycloisomerization of L-AnGA to L-KDGal is proposed, which implies that the absolute configuration does not change during the reaction. To our knowledge, this is the first report on the characterization of L-AnGACI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, J. H., J. Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. J. Yoon, and Y. J. Kim (2012) Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83–88.

    Article  CAS  Google Scholar 

  2. Meinita, M. D. N., B. Marhaeni, T. Winanto, G. T. Jeong, M. N. A. Khan, and Y. K. Hong (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis) as potential resources for bioethanol productio. J. Appl. Phycol. 25: 1957–1961.

    Article  CAS  Google Scholar 

  3. Cole, K. M. and R. G. Sheath (1990) Biology of the Red Algae. Cambridge University Press, NY, USA.

    Google Scholar 

  4. Araki, C. (1956) Structure of the agarose constituent of agar-agar. Bull. Chem. Soc. Japan 29: 543–544.

    Article  CAS  Google Scholar 

  5. Hamer, G. K., S. S. Bhattacharjee, and W. Yaphe (1977) Analysis of the enzymic hydrolysis products of agarose by 13C-n.m.r. spectroscopy. Carbohydr. Res. 54: C7-C10.

  6. Chi, W. J., Y. K. Chang, and S. K. Hong (2012) Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 94: 917–930.

    Article  CAS  Google Scholar 

  7. Lee, D. H., S. J. Cho, S. M. Kim, and S. B. Lee (2012) Postechiella marina gen. nov., sp. nov., isolated from seawater. Int. J. Syst. Evol. Microbiol. 62: 1528–1535.

    Article  CAS  Google Scholar 

  8. Lee, S. B., S. J. Cho, J. A. Kim, S. Y. Lee, S. M. Kim, and H. S. Lim (2014) Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioproc. Eng. 19: 866–878.

    Article  CAS  Google Scholar 

  9. Jung, J. H. and S. B. Lee (2006) Identification and characterization of Thermoplasma acidophilum glyceraldehyde dehydrogenase: A new class of NADP+-specific aldehyde dehydrogenase. Biochem. J. 397: 131–138.

    Article  CAS  Google Scholar 

  10. Kim, S. and S. B. Lee (2005) Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: A key enzyme in the non-phosphorylated Entner-Doudoroff pathway. Biochem. J. 387: 271–280.

    Article  CAS  Google Scholar 

  11. Bae, J., S. M. Kim, and S. B. Lee (2015) Identification and characterization of 2-keto-3-deoxy-L-rhamnonate dehydrogenase belonging to the MDR superfamily from the thermoacidophilic bacterium Sulfobacillus thermosulfidooxidans: Implications to Lrhamnose metabolism in archaea. Extremophiles 19: 469–478.

    Article  CAS  Google Scholar 

  12. Kim, S. M., K. H. Paek, and S. B. Lee (2012) Characterization of NADP+-specific L-rhamnose dehydrogenase from the thermoacidophilic Archaeon Thermoplasma acidophilum. Extremophiles 16: 447–454.

    Article  CAS  Google Scholar 

  13. Kim, S. and S. B. Lee (2006) Characterization of Sulfolobus solfataricus 2-keto-3-deoxy-D-gluconate kinase in the modified Entner-Doudoroff pathway. Biosci. Biotechnol. Biochem. 70: 1308–1316.

    Article  CAS  Google Scholar 

  14. Jung, J. H. and S. B. Lee (2005) Identification and characterization of Thermoplasma acidophilum 2-keto-deoxy-D-gluconate kinase: A new class of sugar kinases. Biotechnol. Bioproc. Eng. 10: 535–539.

    Article  CAS  Google Scholar 

  15. Lim, S. H. (2008) Thermostable aldolases from Thermoplasma acidophilum. MS Thesis, POSTECH, Korea.

    Google Scholar 

  16. Cho, S. J. and S. B. Lee (2014) Identification and characterization of 3,6-anhydro-L-galactose dehydrogenases belonging to the aldehyde dehydrogenase superfamily from marine and soil microorganisms. Biotechnol. Bioproc. Eng. 19: 1058–1068.

    Article  CAS  Google Scholar 

  17. Babbitt, P. C. and J. A. Gerlt (1997) Understanding enzyme superfamilies: Chemistry as the fundamental determinant in the evolution of new catalytic activities. J. Biol. Chem. 272: 30591–30594.

    Article  CAS  Google Scholar 

  18. Gerlt, J. A., P. C. Babbitt, and I. Rayment (2005) Divergent evolution in the enolase superfamily: The interplay of mechanism and specificity. Arch. Biochem. Biophys. 433: 59–70.

    Article  CAS  Google Scholar 

  19. Rakus, J. F., C. Kalyanaraman, A. A. Fedorov, E. V. Fedorov, F. P. Mills-Groninger, R. Toro, J. Bonanno, K. Bain, J. M. Sauder, S. K. Burley, S. C. Almo, M. P. Jacobson, and J. A. Gerlt (2009) Computation-facilitated assignment of the function in the enolase superfamily: a regiochemically distinct galactarate dehydratase from Oceanobacillus iheyensis. Biochemistry 48: 11546–11558.

    Article  CAS  Google Scholar 

  20. Gerlt, J. A., P. C. Babbitt, M. P. Jacobson, and S. C. Almo (2012) Divergent evolution in the enolase superfamily: Strategies for assigning function. J. Biol. Chem. 287: 29–34.

    Article  CAS  Google Scholar 

  21. Green, M. R. and J. Sambrook (2012) Molecular Cloning: A Laboratory Manual. 4th ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  22. Weissbach, A. and J. Hurwitz (1959) The formation of 2-keto-3-deoxyheptonic acid in extracts of Escherichia coli B. I. identification J. Biol. Chem. 234: 705–709.

    CAS  Google Scholar 

  23. Kumar, S., M. Nei, J. Dudley, and K. Tamura (2008) MEGA: A biologistcentric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 9: 299–306.

    Article  CAS  Google Scholar 

  24. Andberg, M., H. Maaheimo, H. Boer, M. Penttilä, A. Koivula, and P. Richard (2012) Characterization of a novel Agrobacterium tumefaciens galactarolactone cycloisomerase enzyme for direct conversion of D-galactarolactone to 3-deoxy-2-keto-L-threohexarate. J. Biol. Chem. 287: 17662–17671.

    Article  CAS  Google Scholar 

  25. Helin, S., P. C. Kahn, B. L. Guha, D. G. Mallows, and A. Goldman (1995) The refined X-ray structure of muconate lactonizing enzyme from Pseudomonas putida PRS2000 at 1.85 Å resolution. J. Mol. Biol. 254: 918–941.

    Article  CAS  Google Scholar 

  26. Hilditch, S., S. Berghäll, N. Kalkkinen, M. Penttilä, and P. Richard (2007) The missing link in the fungal D-galacturonate pathway: Identification of the L-threo-3-deoxy-hexulosonate aldolase. J. Biol. Chem. 282: 26195–26201.

    Article  CAS  Google Scholar 

  27. Neidhar, D. J., G. L. Kenyon, J. A. Gerlt and G. A. Petsko (1990) Mandelate racemase and muconate lactonizing enzyme are mechanistically distinct and structurally homologous. Nature 347: 692–694.

    Article  Google Scholar 

  28. Kenyon, G. L., J. A. Gerlt, G. A. Petsko, and J. W. Kozarich (1995) Mandelate racemase structure-function studies of a pseudosymmetric enzyme. Acc. Chem. Res. 28: 178–186.

    Article  CAS  Google Scholar 

  29. Schafer, S. L., W. C. Barrett, A. T. Kallarakal, B. Mitra, J. W. Kozarich, and J. A. Gerlt (1996) Mechanism of the reaction catalyzed by mandelate racemase: Structure and mechanistic properties of the D270N mutant. Biochemistry 35: 5662–5669.

    Article  CAS  Google Scholar 

  30. Babbitt, P. C., G. T. Mrachko, M. S. Hasson, G. W. Huisman, R. Kolter, D. Ringe, G. A. Petsko, G. L. Kenyon, and J. A. Gerlt (2005) A functionally diverse enzyme superfamily that abstracts the alpha protons of carboxylic acids. Science 267: 1159–1161.

    Article  Google Scholar 

  31. Babbitt P. C., M. S. Hasson, J. E. Wedekind, D. R. Palmer, W. C. Barrett, G. H. Reed, I. Rayment, D. Ringe, G. L. Kenyon, and J. A. Gerlt (1996) The enolase superfamily: A general strategy for enzyme-catalyzed abstraction of the a-protons of carboxylic acids. Biochemistry 35: 16489–16501.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Bok Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, S.J., Kim, J.A. & Lee, S.B. Identification and characterization of 3,6-anhydro-L-galactonate cycloisomerase belonging to theenolase superfamily. Biotechnol Bioproc E 20, 462–472 (2015). https://doi.org/10.1007/s12257-015-0359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0359-7

Keywords

Navigation