Skip to main content

Advertisement

Log in

Gene knockout identification for metabolite production improvement using a hybrid of genetic ant colony optimization and flux balance analysis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The increasing demand of biochemical supply for various industries has spurred the development of metabolic engineering to find the optimal design of the microbial cell factories. Traditional method of chemical synthesis using the natural producer leads to the production far below their theoretical maximums. Gene knockout strategy is then introduced to improve the metabolite production. To aid the process, many computational algorithms have been developed to design the optimal microbial strain as cell factories to increase the production of the desired metabolite. However, due to the size of the genome scale model of the microbial strain, finding the optimal combination of genes to be knocked out is not an easy task. In this paper, we propose a hybrid of Genetic Ant Colony Optimization (GACO) and Flux Balance Analysis (FBA) namely GACOFBA to find the optimal gene knockout that increase the production of the target metabolite. Using E. coli and S. cerevisiae genome scale model, we test our proposed hybrid algorithm to increase the production of four different metabolites. By comparing with the results from existing method OptKnock as well as the conventional Ant Colony Optimization (ACO), the results show that our proposed hybrid algorithm able to identify the best set of genes and increase the production while maintaining the optimal growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joyce, A. R., B. Ø. Palsson, P. Fu, and S. Panke (2009) In silico genome-scale metabolic models: The constraint-based approach and its application. pp. 193–233. John Wiley & Sons Inc., Hoboken, NJ, USA.

    Google Scholar 

  2. Song, B., E. Buyuktahtakin, N. Bandyopadhyay, S. Ranka, and T. Kahveci (2011) Identifying enzyme knockout strategies on multiple enzyme associations. Bioinformatics — Trends and Methodol. 162: 353–370.

    Google Scholar 

  3. Mahadevan, R., A. P. Burgard, I. Famili, S. V. Dien, and H. S. Christophe (2005) Applications of metabolic modeling to drive bioprocess development for the production of value-added chemicals. Biotechnol. Bioproc. Eng. 10: 408–417.

    Article  CAS  Google Scholar 

  4. Price, N. D., J. A. Papin, C. H. Schilling, and B. O. Palsson (2003) Genome-scale microbial in silico models: The constraints-based approach. Trends Biotechnol. 21: 162–169.

    Article  CAS  Google Scholar 

  5. Park, J. M., T. Y. Kim, and S. Y. Lee (2009) Constraints-based genome-scale metabolic simulation for systems metabolic engineering. Biotechnol. Adv. 27: 978–988.

    Google Scholar 

  6. Orth, J. D., I. Thiele, and B. Ø. Palsson (2010) What is flux balance analysis? Nat. Computat. Biol. 28: 245–248.

    CAS  Google Scholar 

  7. Reed, J. L. and B. O. Palsson (2003) Thirteen years of building constraint-based in silico models of Escherichia coli. J. Bacteriol. 185: 2692–2699.

    Article  CAS  Google Scholar 

  8. Burgard, A. P., P. Pharkya and C. D. Maranas (2003) Optknock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84: 647–657.

    Article  CAS  Google Scholar 

  9. Holland, J. H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, Michigan.

    Google Scholar 

  10. Dorigo, M., V. Maniezzo, and A. Colorni (1996) Ant System: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics—Part B 26: 29–41.

    Article  CAS  Google Scholar 

  11. Pham, D. T., A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, and M. Zaidi (2006) The bees algorithm — A novel tool for complex optimisation problems. pp. 454–461. Proceedings of IPROMS 2006 Conference. July 3–14. Cardiff, UK.

    Google Scholar 

  12. Patil, K. R., I. Rocha, J. Forster, and J. Nielsen (2005) Evolutionary programming as a platform for in silico metabolic engineering. BMC Bioinform. 6: 308.

    Article  Google Scholar 

  13. Hwang, S. F. and R. S. He (2006) A hybrid real-parameter genetic algorithm for function optimization. Adv. Eng. Inform. 20: 7–21.

    Article  Google Scholar 

  14. Xue, X. D., X. D. Cheng, B. Xu, H. L. Wang, and C. P. Jiang (2010) The basic principle and application of ant colony optimization algorithm. pp. 358–360. Artificial Intelligence and Education (ICAIE) International Conference. Oct 29–30. Hangzhou, China.

    Google Scholar 

  15. Kauffman, K. J., P. Prakash, and J. S. Edward (2003) Advances in flux balance analysis. Curr. Opinion Biotechnol. 14: 491–496.

    Article  CAS  Google Scholar 

  16. Varma, A. and B. O. Palsson (1994) Metabolic flux balancing: Basic concept, scientific and practical use. Bio/Technol. 12: 994–998.

    Article  CAS  Google Scholar 

  17. Nemati, S., M. E. Basiri, N. Ghasem-Aghaee, and M. H. Aghdam (2009) A novel ACO–GA hybrid algorithm for feature selection in protein function prediction. Expert. Syst. Applicat. 36: 12086–12094.

    Article  Google Scholar 

  18. Feist, A. M., C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce, P. D. Karp, L. J. Broadbelt, V. Hatzimanikatis, and B. Ø. Palsson (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3: 121.

    Article  Google Scholar 

  19. Mo, M. L., B. Ø. Palsson, and M. J. Herrgård (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 3: 37.

    Article  Google Scholar 

  20. Schellenberger, J., R. Que, R. M. Fleming, I. Thiele, J. D. Orth, A. M. Feist, D. C. Zielinski, A. Bordbar, N. E. Lewis, S. Rahmanian, J. Kang, D. R. Hyduke, and B. Ø. Palsson (2011) Quantitative prediction of cellular metabolism with constraint-based models: The COBRA Toolbox v2.0. Nat. Protoc. 6: 1290–1307.

    Article  CAS  Google Scholar 

  21. Suman, M., J. Clomburg, and R. Gonzalez (2010) Escherichia coli strains engineered for homofermentative production of d-lactic acid from glycerol. Appl. Environ. Microbiol. 76: 4237–4336.

    Google Scholar 

  22. Zhu, J. and K. Shimizu (2005) Effect of a single-gene knockout on the metabolic regulation in Escherichia coli for D-lactate production under microaerobic condition. Metab. Eng. 7: 104–115.

    Article  CAS  Google Scholar 

  23. Yang, Y., G. N. Benett, and K. San (1999) Effect of inactivation of nuo and ackA-pta on redistribution of metabolic fluxes in Escherichia coli. Biotechnol. Bioeng. 65: 291–297.

    Article  CAS  Google Scholar 

  24. Zhao, J., T. Baba, H. Mori, and K. Shimizu (2004) Effect of zwf gene knockout on the metabolism of Escherichia coli grown on glucose or acetate. Metab. Eng. 6: 164–174.

    Article  CAS  Google Scholar 

  25. Arikawa, Y., T. Kuroyanagi, M. Shimosake, H. Muratsubaki, K. Enomoto, R. Kodaira, and M. Okazaki (1999) Effect of gene disruptions of the TCA cycle on production of succinic acid in Saccharomyces cerevisiae. J. Biosci. Bioeng. 87: 28–26.

    Article  CAS  Google Scholar 

  26. Park, S., P. Cotter, and R. P. Gunsalus (1995) Regulation of malate dehydrogenase (mdh) gene expression in Escherichia coli in response to oxygen, carbon, and heme availability. J. Bacteriol. 177: 6652–6656.

    CAS  Google Scholar 

  27. Zimenkov, D., A. Gulevich, A. Skorokhodova, I. Biriukova, Y. Kozlov, and S. Mashko (2005) Escherichia Coli ORF ybhE is pgl gene encoding 6-phosphogluconolactonase (EC 3.1.1.31) that has no homology with known 6PGLs from other organisms. FEMS Microbiol. Lett. 244: 275–280.

    Article  CAS  Google Scholar 

  28. Richard, J. D., L. Eshantha, J. Salgado, and J. E. Hewlins (2002) The catabolism of amino acid to long chain and complex alcohols in Saccharomyces cerevisiae. J. Biol. Chem. 278: 8028–8034.

    Article  Google Scholar 

  29. Leskovac, V., S. Triviæ, and D. Perièin (2002) The three zinccontaining alcohol dehydrgenase from baker’s yeast, Saccharomyces cerevisiae. FEMS Yeast Res. 2: 481–494.

    CAS  Google Scholar 

  30. Lee, S. J., D. Lee, T. Y. Kim, B. H. Kim, J. Lee, and S. Y. Lee (2005) Metabolic engineering of Escherichia coli for enhanced production of succinic acid, based on genome comparison and In Silico gene knockout simulation. Appl. Environ. Microbiol. 71: 7880–7887.

    Article  CAS  Google Scholar 

  31. Cotter, P. A., V. Chepuri, R. B. Gennis, and R. P. Gunsalus (1990) Cytochrome o(cyoABCD) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product. J. Bacteriol. 172: 6333–6338.

    CAS  Google Scholar 

  32. Janausch, I. G., O. B. Kim, and G. Unden (2001) DctA-and Dcuindependent transport of succinate in Escherichia coli: Contribution of diffusion and of alternative carriers. Arch. Microbiol. 176: 224–230.

    Article  CAS  Google Scholar 

  33. Compos-Bermudez, V. A., F. P. Bologna, C. S. Andreo, and M. F. Drincovich (2010) Functional dissection of Escherichia coli phosphotransacetylase structural domains and analysis of key compounds involved in activity regulation. FEBS J. 277: 1957–1966.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Saberi Mohamad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salleh, A.H.M., Mohamad, M.S., Deris, S. et al. Gene knockout identification for metabolite production improvement using a hybrid of genetic ant colony optimization and flux balance analysis. Biotechnol Bioproc E 20, 685–693 (2015). https://doi.org/10.1007/s12257-015-0276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0276-9

Keywords

Navigation