Potential of Bacillus megaterium for production of polyhydroxyalkanoates using the red algae Gelidium amansii


To investigate the ability to accumulate polyhydroxyalkanoates (PHA) using either acid-treated or un-treated red algae (Gelidium amansii) as a carbon source, a total of six Bacillus megaterium strains were tested. All strains were able to grow considerably when acid-treated algae were used, where strain KCTC 3712 reached highest total dry cell weight (DCW) of 4.1 g/L with a PHA content of 30%. Strain KCTC 2194 accumulated highest PHA of 55% with a total DCW of 3.3 g/L from treated algae. By using un-treated G. amansii as a carbon source, weak growth was observed in all strains. Strains KCTC 1366 and KCTC 3007 reached DCWs of 2.0 and 1.2 g/L and PHA contents of 23 and 27%, respectively, from un-treated algae. This is the first report on PHA production from acidtreated and un-treated red algae.

This is a preview of subscription content, access via your institution.


  1. 1.

    Wang, Y., J. Yin, and G. Q. Chen (2014) Polyhydroxyalkanoates, challenges and opportunities. Curr. Opin. Biotechnol., 30: 59–65.

    CAS  Article  Google Scholar 

  2. 2.

    Suriyamongkol, P., R. Weselake, S. Narine, M. Moloney, and S. Shah (2007) Biotechnological approaches for the production of polyhydroxyalkanoates in microorganisms and plants -a review. Biotechnol. Adv., 25: 148–175.

    CAS  Article  Google Scholar 

  3. 3.

    Anderson, A. J. and E. A. Dawes (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev., 54: 450–472.

    CAS  Google Scholar 

  4. 4.

    Kadouri, D., E. Jurkevitch, Y. Okon, and S. Castro-Sowinski (2005) Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit. Rev. Microbiol., 31: 55–67.

    CAS  Article  Google Scholar 

  5. 5.

    Posada, J. A., L. E. Rincón, and C. A. Cardona (2012) Design and analysis of biorefineries based on raw glycerol: addressing the glycerol problem. Bioresour. Technol., 111: 282–293.

    CAS  Article  Google Scholar 

  6. 6.

    Park, J. H., J. Y. Hong, H. C. Jang, S. G. Oh, S. H. Kim, J. J. Yoon, and Y. J. Kim (2012) Use of Gelidium amansii as a promising resource for bioethanol: A practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol., 108: 83–88.

    CAS  Article  Google Scholar 

  7. 7.

    Wu, Q., H. Huang, G. Hu, J. Chen, K. P. Ho, and G.Q. Chen (2001) Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Anton. Leeuw., 80: 111–118.

    CAS  Article  Google Scholar 

  8. 8.

    Doi, Y. (1990) Microbial Polyesters. VCH Publishers, NY, USA.

    Google Scholar 

  9. 9.

    Lee, S. Y., J. Choi, and H. H. Wong (1999) Recent advances in polyhydroxyalkanoate production by bacterial fermentation: Mini-review. Int. J. Biol. Macromol., 25: 31–36.

    CAS  Article  Google Scholar 

  10. 10.

    Chen, G. Q. and Q. Wu (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials, 26: 6565–6578.

    CAS  Article  Google Scholar 

  11. 11.

    Valappil, S. P., S. K. Misra, A. R. Boccaccini, T. Keshavarz, C. Bucke, and I. Roy (2007) Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. J. Biotechnol., 132: 251–258.

    CAS  Article  Google Scholar 

  12. 12.

    Kanjanachumpol, P., S. Kulpreecha, V. Tolieng, and N. Thongchul (2013) Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioproc. Biosyst. Eng., 36: 1463–1474.

    CAS  Article  Google Scholar 

  13. 13.

    Kulpreecha, S., A. Boonruangthavorn, B. Meksiriporn, and N. Thongchul (2009) Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J. Biosci. Bioeng., 107: 240–245.

    CAS  Article  Google Scholar 

  14. 14.

    Ra, C. H., G. T. Jeong, M. K. Shin, and S. K. Kim (2013) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii. Bioresour. Technol., 140: 421–425.

    CAS  Article  Google Scholar 

  15. 15.

    Nayak, P. K., A. K. Mohanty, T. Gaonkar, A. Kumar, S. N. Bhosle, and S. Garg (2013) Rapid identification of polyhydroxyalkanoate accumulating members of Bacillales using internal primers for phaC gene of Bacillus megaterium. ISRN Bacteriol., 2013: 562014.

  16. 16.

    Yun, J. H., S. S. Sawant, and B. S. Kim (2013) Production of polyhydroxyalkanoates by Ralstonia eutropha from volatile fatty acids. Korean J. Chem. Eng., 30: 2223–2227.

    CAS  Article  Google Scholar 

  17. 17.

    Full, T. D., D. O. Jung, and M. T. Madigan (2006) Production of poly-beta-hydroxyalkanoates from soy molasses oligosaccharides by new, rapidly growing Bacillus species. Lett. Appl. Microbiol., 43: 377–384.

    CAS  Article  Google Scholar 

  18. 18.

    Shahid, S., R. Mosrati, J. Ledauphin, C. Amiel, P. Fontaine, J. L. Gaillard, and D. Corroler (2013) Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: Evidence of an atypical metabolism in Bacillus megaterium DSM 509. J. Biosci. Bioeng., 116: 302–308.

    CAS  Article  Google Scholar 

  19. 19.

    McCool, G. J. and M. C. Cannon (1999) Polyhydroxyalkanoate inclusion body-associated proteins and coding region in Bacillus megaterium. J. Bacteriol., 181: 585–592.

    CAS  Google Scholar 

  20. 20.

    McCool, G. J. and M. C. Cannon (2001) PhaC and PhaR are required for polyhydroxyalkanoic acid synthase activity in Bacillus megaterium. J. Bacteriol., 183: 4235–4243.

    CAS  Article  Google Scholar 

  21. 21.

    Eppinger, M., B. Bunk, M. A. Johns, J. N. Edirisinghe, K. K. Kutumbaka, S. S. K. Koenig, H. H. Creasy, M. J. Rosovitz, D. R. Riley, S. Daugherty, M. Martin, L. D. Elbourne, I. Paulsen, R. Biedendieck, C. Braun, S. Grayburn, S. Dhingra, V. Lukyanchuk, B. Ball, R. Ul-Qamar, J. Seibel, E. Bremer, D. Jahn, J. Ravel, and P. S. Vary (2011) Genome sequences of the biotechnologically important Bacillus megaterium strains QM B1551 and DSM319. J. Bacteriol., 193: 4199–4213.

    CAS  Article  Google Scholar 

  22. 22.

    Wi, S. G., H. J. Kim, S. A. Mahadevan, D. J. Yang, and H. J. Bae (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour. Technol., 100: 6658–6660.

    CAS  Article  Google Scholar 

  23. 23.

    Magill, N. G., A. E. Cowan, D. E. Koppel, and P. Setlow (1994) The internal pH of the forespore compartment of Bacillus megaterium decreases by about 1 pH unit during sporulation. J. Bacteriol., 176: 2252–2258.

    CAS  Google Scholar 

  24. 24.

    Sun, Z., J. A. Ramsay, M. Guay, and B. A. Ramsay (2007) Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates from nonanoic acid by Pseudomonas putida KT2440. Appl. Microbiol. Biotechnol., 74: 69–77.

    CAS  Article  Google Scholar 

  25. 25.

    Follonier, S., B. Henes, S. Panke, and M. Zinn (2012) Putting cells under pressure: A simple and efficient way to enhance the productivity of medium-chain-length polyhydroxyalkanoate in processes with Pseudomonas putida KT2440. Biotechnol. Bioeng., 109: 451–461.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Beom Soo Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alkotaini, B., Sathiyamoorthi, E. & Kim, B.S. Potential of Bacillus megaterium for production of polyhydroxyalkanoates using the red algae Gelidium amansii . Biotechnol Bioproc E 20, 856–860 (2015). https://doi.org/10.1007/s12257-015-0205-y

Download citation


  • polyhydroxyalkanoates
  • Bacillus megaterium
  • Gelidium amansii
  • red algae