Skip to main content
Log in

Engineering thermal properties of elastin-like polypeptides by incorporation of unnatural amino acids in a cell-free protein synthesis system

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Based on the central dogma of protein synthesis, traditional methods for protein engineering require that altering protein structure and function must be accompanied by changing the nucleotide sequence of the genes encoding the protein. However, the preparation of a template gene for each individual protein requires a great deal of time and effort, thereby limiting the throughput and scope of studying engineered proteins. In this study, we describe translation-level engineering of proteins using cell-free protein synthesis. Taking advantage of the promiscuity of aminoacyl tRNA synthetases in accepting structurally similar amino acid analogues, unnatural amino acids were introduced into elastin-like polypeptides in place of the corresponding cognate amino acids. Through the incorporation of various analogues and starting from the same gene, the phase transition temperatures of elastin-like polypeptides became tunable. Our results demonstrate the usefulness of cell-free protein synthesis for protein engineering using unnatural amino acids without the need for cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Annabi, N., S. M. Mithieux, G. Camci-Unal, M. R. Dokmecia, A. S. Weiss, and A. Khademhosseini (2013) Elastomeric recombinant protein-based biomaterials. Biochem. Eng. J. 77: 110–118.

    Article  CAS  Google Scholar 

  2. MacEwan, S. R. and A. Chilkoti (2010) Elastin-like polypeptides: Biomedical applications of tunable biopolymers. Biopolymers. 94: 60–77.

    Article  CAS  Google Scholar 

  3. Lee, C. H., A. Singla, and Y. Lee (2001) Biomedical applications of collagen. Int. J. Pharm. 221: 1–22.

    Article  CAS  Google Scholar 

  4. Kundu, B., N. E. Kurland, B. Subia, C. Patra, F. B. Engel, V. K. Yadavalli, and S. C. Kundu (2014) Silk proteins for biomedical applications: Bioengineering perspectives. Prog. Polym. Sci. 39: 251–267.

    Article  CAS  Google Scholar 

  5. Rouse, J. G. and M. E. Dyke (2010) A review of keratin-based biomaterials for biomedical applications. Materials. 3: 999–1014.

    Article  Google Scholar 

  6. Choi, B. H., H. Cheong, Y. K. Jo, S. Y. Bahn, J. H. Seo, and H. J. Cha (2014) Highly purified mussel adhesive protein to secure biosafety fro in vivo applications. Microb. Cell. Fact. 13: 52.

    Article  Google Scholar 

  7. Rodriguez-Cabello, J. C., S. Prieto, J. Reguera, F. J. Arias, and A. Ribeiro (2007) Biofunctional design of elastin-like polmers for advanced applications in nanobiotechnology. J. Biomateri. Sci. Polym. Edn. 18: 269–286.

    Article  CAS  Google Scholar 

  8. Serrono, V., W. Liu, and S. Franzen (2007) An infrared spectroscopic study of the conformational transition of elastin-like polypeptides. Biophys. J. 93: 2429–2435.

    Article  Google Scholar 

  9. Hassouneh, W., T. Christenesen, and A. Chilkoti (2010) Elastinlike polypeptides as a purification tag for recombinant proteins. Curr. Protoc. Protein. Sci. 6.11.1-.6.11.16.

    Google Scholar 

  10. Kostal, J., A. Mulchandani, and E. Chen (2001) Tunable biopolymers for heavy metal removal. Macromol. 34: 2257–2261.

    Article  CAS  Google Scholar 

  11. Lei Cai., Cong, B. Dinh, and Saran, C. Heilshorn (2014) One-pot synthesis of elastin-like polypeptide hydrogels with grafted VEGF-mimetic peptides. Biomater. Sci. 2: 757–765.

    Article  Google Scholar 

  12. Urry, D. W., C. H. Luan, T. M. Parker, D. C. Gowda, K. U. Prasad, M. C. Reid, and A. Safavy (1991) Temperature of polypeptide inverse temperature transition depends on mean residue hydrophobicity. J. Amer. Chem. Soc. 113: 4346–4348.

    Article  CAS  Google Scholar 

  13. Park, J. E. and J. I. Won (2009) Thermal behaviours of elastinlike polypeptides (ELPs) according to their physical properties and environmental conditions. Biotechnol. Bioproc. Eng. 14: 662–667.

    Article  CAS  Google Scholar 

  14. McMillan, R. A., T. A. T. Lee, and V. P. Conticello (1999) Rapid assembly of synthetic genes encoding protein polymers. Macromol. 32: 3643–3648.

    Article  CAS  Google Scholar 

  15. Meyer, D. E. and A. Chilkoti (2002) Genetically encoded synthesis of protein-based polymers with precisely specified molecular weight and sequence by recursive directional ligation: Examples from the elastin-like polypeptide system. Biomacromol. 3: 357–367.

    Article  CAS  Google Scholar 

  16. Won, J. I. and A. E. Barron (2002) A new cloning method for the preparation of long repetitive polypeptides without a sequence requirement. Macromol. 35: 8281–8287.

    Article  CAS  Google Scholar 

  17. Hartman, M. C. T., K. Josephson, C. W. Lin, and J. K. Szostak (2007) An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS ONE. 2: e972.

    Article  Google Scholar 

  18. Hartman, M. C., J. W. Josephson, and J. W. Szostak (2008) Enzymatic aminoacylation of tRNA with unnatural amino acids. Proc. Natl. Acad. Sci. 103: 4356–4361.

    Article  Google Scholar 

  19. Kim, W., R. A. McMillan, J. P. Snyder, and V. P. Conticello (2005) A stereoelectronic effect on turn formation due to proline substitution in elastin-mimetic polypeptides. J. Am. Chem. Soc. 127: 18121–18132.

    Article  CAS  Google Scholar 

  20. Kim, W, Y., A. George, M. Evans, and V. P. Conticello (2004) Cotranslational incorporation of a structurally diverse series of proline analogues in an Escherichia coli expression system. ChemBioChem. 5: 928–936.

    Article  CAS  Google Scholar 

  21. Kim, T. W., J. E. Keum, I. S. Oh, C. Y. Choi, C. G. Park, and D. M. Kim (2006) Simple procedures for the construction of a robust and cost-effective cell-free protein synthesis system. J. Biotechnol. 126: 554–561.

    Article  CAS  Google Scholar 

  22. Chu, H. S., J. E. Park, D. M. Kim, B. G. Kim, B. G, and J. I. Won (2010) The effects of supplementing specific amino acids on the expression of elastin-like polypeptides. Protein Exp. Purif. 74: 298–303.

    Article  CAS  Google Scholar 

  23. Edwardraja, S., S. Sriram, R. Govindan, N. Budisa, and S. G. Lee (2011) Enhancing the thermal stability of a single-chain Fv fragment by in vivo global fluorination of the proline residues. Mol. BioSyst. 7: 258–265.

    Article  CAS  Google Scholar 

  24. Son, J. M., J. H. Ahn, M. Y. Hwang, C. G. Park, C. Y. Choi, and D. M. Kim (2006) Enhancing the efficiency of cell-free protein synthesis through the polymerase-chain-reaction-based addition of a translation enhancer sequence and the in situ removal of the extra amino acids residues. Anal. Biochem. 351: 187–192.

    Article  CAS  Google Scholar 

  25. Hong, S. H., I. Ntai, A. D. Haimovich, N. L. Kelleher, F. J. Isaacs, and M. C. Jewett (2014) Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth. Biol. 3: 398–409.

    Article  CAS  Google Scholar 

  26. Gubbens, J., S. J. Kim, Z. Y. Yang, A. E. Johnson, and W. R. Skach (2010) In vitro incorporation on nonnatural amino acids into protein using tRNA(Cys)-derived opal, ochre, and amber suppressor tRNAs. RNA. 16: 1660–1672.

    Article  CAS  Google Scholar 

  27. Oh. S. J., K. H. Lee, H. C. Kim, C. Catherine, H. Yun, and D. M. Kim (2014) Translational incorporation of multiple unnatural amino acids in a cell-free protein synthesis system. Biotechnol. Bioproc. Eng. 19: 426–432.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Eui Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catherine, C., Oh, S.J., Lee, KH. et al. Engineering thermal properties of elastin-like polypeptides by incorporation of unnatural amino acids in a cell-free protein synthesis system. Biotechnol Bioproc E 20, 417–422 (2015). https://doi.org/10.1007/s12257-015-0190-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0190-1

Keywords

Navigation