Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization


The potential of isolated actinomycetes and fungi were evaluated for the cellulase and xylanase production under solid state fermentation conditions. Maximal secretion of enzymes was observed with Phanerochaete chrysosporium using soybean straw. The potential of the produced crude enzyme complex was demonstrated by two-step enzymatic hydrolysis of untreated and mild acidpretreated sorghum husk (SH). A cellulase dose of 10 filter paper units (FPU) released 563.21 mg of reducing sugar (RS) per gram of SH with 84.45% hydrolysis and 53.64% glucose yields, respectively. Finally, enzymatic hydrolysates of SH were utilized for hydrogen production by Clostridium beijerinckii. Effects of temperature, pH of media, and substrate concentration on the biohydrogen production from SH hydrolysates were investigated. The optimal conditions for maximal hydrogen production using SH hydrolysate were determined to be a loading of 5.0 g RS/L, at 35°C, and controlled pH at 5.5. Under these optimal conditions, the cumulative H2 production, H2 production rate, and H2 yield were 1,117 mL/L, 46.54 mL/L/h, and 1.051 mol/mol RS, respectively. These results demonstrated a cost-effective hydrogen production is possible with sorghum husk as a lignocellulosic feedstock.

This is a preview of subscription content, access via your institution.


  1. 1.

    Xin, F. and A. Geng (2009) Horticultural waste as the substrate for cellulase and hemicellulase production by Trichoderma reesei under solid-state fermentation. Appl. Biochem. Biotechnol. 162: 295–306.

    Article  Google Scholar 

  2. 2.

    Saratale, G. D., R. G. Saratale, and S. E. Oh (2012) Production and characterization of multiple cellulolytic enzymes by isolated Streptomyces sp. MDS. Biomass Bioenergy 47: 302–315.

    CAS  Article  Google Scholar 

  3. 3.

    Deswal, D., Y. P. Khasa, and R. C. Kuhad (2011) Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour. Technol. 102: 6065–6072.

    CAS  Article  Google Scholar 

  4. 4.

    Saratale, G. D. and S. E. Oh (2011) Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU. Biodegradation 22: 905–919.

    CAS  Article  Google Scholar 

  5. 5.

    Kalogeris, E., F. Iniotaki, E. Topakas, P. Christakopoulos, D. Kekos, and B. J. Macris (2003) Performance of an intermittent agitation rotating drum type bioreactor for solid-state fermentation of wheat straw. Bioresour. Technol. 86: 207–213.

    CAS  Article  Google Scholar 

  6. 6.

    Dhillon, G., H. S. Oberoi, S. Kaur, S. Bansal, and S. K. Brar (2011) Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crop Prod. 34: 1160–1167.

    CAS  Article  Google Scholar 

  7. 7.

    Thomas, L., C. Larroche, and A. Pandey (2013) Current developments in solid-state fermentation. Biochem. Eng. J. 81: 146–161.

    CAS  Article  Google Scholar 

  8. 8.

    Sukumaran, R. K., V. J. Surender, R. Sindhu, P. Binod, K. U. Janu, K. V. Sajna, K. P. Rajasree, and A. Pandey (2010) Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresour. Technol, 101: 4826–4833.

    CAS  Article  Google Scholar 

  9. 9.

    Krishna, C. (2005) Solid-state fermentation systems-An overview. Critic. Rev. Biotechnol. 25: 1–30.

    CAS  Article  Google Scholar 

  10. 10.

    Gassara, F., S. K. Brar, R. D. Tyagi, M. Verma, and R. Y. Surampalli (2010) Screening of agro-industrial wastes to produce lignolytic enzymes by Phanerochaete chrysosporium. Biochem. Eng. J. 49: 388–394.

    CAS  Article  Google Scholar 

  11. 11.

    Saratale, G. D., I. J. Chien, and J. S. Chang (2011) Enzymatic pretreatment of cellulosic wastes for anaerobic treatment and bioenergy production. pp. 279–308. In: Fang HHP (ed.). Environmental Anaerobic Technology Applications and New Developments. London Imperial College Press, London, UK.

    Google Scholar 

  12. 12.

    Saratale, G. D., R. G. Saratale, Y. C. Lo, and J. S. Chang (2010) Multicomponent cellulase production by Cellulomonas biazotea NCIM-2550 and their applications for cellulosic biohydrogen production. Biotechnol. Prog. 26: 406–416.

    CAS  Google Scholar 

  13. 13.

    Li, C., B. Knierim, C. Manisseri, R. Arora, H. V. Scheller, M. Auer, K. P. Vogel, B. A. Simmons, and S. Singh (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresour. Technol. 101: 4900–4906.

    CAS  Article  Google Scholar 

  14. 14.

    Kumar, R., G. Mago, V. Balan, and C. E. Wyman (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour. Technol. 100: 3948–3962.

    CAS  Article  Google Scholar 

  15. 15.

    Saratale, G. D., R. G. Saratale, and J. S. Chang (2013) Biohydrogen from renewable resources. pp. 185–221. In: A. Pandey, J. S. Chang, P. C. Hallenbeck, and C. Larroche (ed.). Biohydrogen. Elsevier.

    Google Scholar 

  16. 16.

    Chen, C. Y., G. D. Saratale, C. M. Lee, P. C. Chen, and J. S. Chang (2008) Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fiber. Int. J. Hydrogen Energy 33: 6886–6895.

    CAS  Article  Google Scholar 

  17. 17.

    Lo, Y. C., W. C. Lu, C. Y. Chen, and J. S. Chang (2010) Dark fermentative hydrogen production from enzymatic hydrolysate of xylan and pretreated rice straw by Clostridium butyricum CGS5. Bioresour. Technol. 101: 5885–5891.

    CAS  Article  Google Scholar 

  18. 18.

    Saratale, G. D., S. D. Chen, Y. C. Lo, R. G. Saratale, and J. S. Chang (2008) Outlook of biohydrogen production from lignocellulosic feedstock using dark fermentation- a review. J. Sci. Ind. Res. 67: 962–979.

    CAS  Google Scholar 

  19. 19.

    Magnusson, L., R. R. Islam, R. D. Sparling, R. N. Levin, and R. Cicek (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int. J. Hydrogen Energy 33: 5398–5403.

    CAS  Article  Google Scholar 

  20. 20.

    Liu, C. H., C. Y. Chang, C. L. Cheng, D. J. Lee, and J. S. Chang (2012) Fermentative hydrogen production by Clostridium butyricum CGS5 using carbohydrate-rich microalgal biomass as feedstock. Int. J. Hydrogen Energy 37: 15458–15464.

    CAS  Article  Google Scholar 

  21. 21.

    Kim, J. K., L. Nhat, Y. N. Chun, and S. W. Kim (2008) Hydrogen production conditions from food waste by dark fermentation with Clostridium beijerinckii KCTC 1785. Biotechnol. Bioproc. Eng. 3: 499–504.

    Article  Google Scholar 

  22. 22.

    Lee, K. S., L. M. Whang, G. D. Saratale, S. D. Chen, J. S. Chang, S. D. H. Hafez, S. D. Nakhla, and G. H. E. Naggar (2014) Biological hydrogen production via dark fermentation. pp. 181–250. In: Sherif, S. A. (ed.). Hydrogen Energy Handbook, Taylor and Francis Group.

    Google Scholar 

  23. 23.

    Kalyani, D., K. M. Lee, T. S. Kim, J. Li, S. S. Dhiman, Y. C. Kang, and J. K. Lee (2013) Microbial consortia for saccharification of woody biomass and ethanol fermentation. Fuel 107: 815–822.

    CAS  Article  Google Scholar 

  24. 24.

    Ouyang, J., Z. Li, X. Li, H. Ying, and Q. Yong (2009) Enhanced enzymatic conversion and glucose production via two-step enzymatic hydrolysis of corncob residue from xylo-oligosaccharides producers waste. Bioresources 4: 1586–1599.

    CAS  Google Scholar 

  25. 25.

    Goering, H. K. and J. P. Van Soest (1970) Forage for fiber analysis. pp. 1–20. In: USDA Agricultural Handbook No.379. U.S. Agricultural Research Service, Washington, USA.

    Google Scholar 

  26. 26.

    Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    CAS  Article  Google Scholar 

  27. 27.

    Saratale, G. D., S. D. Kshirsagar, V. T. Sampange, R. G. Saratale, S. E. Oh, S. P. Govindwar, and M. K. Oh (2014) Cellulolytic enzymes production by utilizing agricultural wastes under solid state fermentation and its application for biohydrogen production. Appl. Biochem. Biotechnol. 174: 2801–2817.

    CAS  Article  Google Scholar 

  28. 28.

    Lee, J. W., H. Y. Kim, B. W. Koo, D. H. Choi, M. Kwon, and I. G. Choi (2008) Enzymatic saccharification of biologically pretreated Pinus densiflora using enzymes from brown rot fungi. J. Biosci. Bioeng. 106: 162–167.

    CAS  Article  Google Scholar 

  29. 29.

    Sharma, S. K., K. L. Kalra, and G. S. Kocher (2004) Fermentation of enzymatic hydrolysate of sunflower hulls for ethanol production and its scale-up. Biomass Bioenergy 27: 399–402.

    CAS  Article  Google Scholar 

  30. 30.

    Negro, M., P. Manzanares, I. Ballesteros, J. Oliva, A. Cabanas, and M. Ballesteros (2003) Hydrothermal pretreatment conditions to enhance ethanol production from poplar biomass. Appl. Biochem. Biotechnol. 105: 87–100.

    Article  Google Scholar 

  31. 31.

    Ko, J. K, J. S. Bak, M. W. Jung, M. W. Lee, I. G. Choi, and T. H. Kim (2009) Ethanol production from rice straw using optimized aqueous-ammonia soaking pretreatment and simultaneous saccharification and fermentation processes. Bioresour. Technol. 100: 4374–4380.

    CAS  Article  Google Scholar 

  32. 32.

    Binod, K. Satyanagalakshmi, R. Sindhu, K. U. Janu, R. K. Sukumaran, and A. Pandey (2012) Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renew. Energ. 37: 109–116.

    CAS  Article  Google Scholar 

  33. 33.

    Pattra, S, S. Sangyoka, M. Boonmee, and A. Reungsang (2008) Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int. J. Hydrogen Energy 33: 5256–5565.

    CAS  Article  Google Scholar 

  34. 34.

    Wang, J. and W. Wan (2009) Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34: 799–811.

    CAS  Article  Google Scholar 

  35. 35.

    Zhao, X., D. Xing, N. Fu, B. Liu, and N. Ren (2011) Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Bioresour. Technol. 102: 8432–8436.

    CAS  Article  Google Scholar 

  36. 36.

    Pan, C. M., Y. T. Fan, P. Zhao, and H. W. Hou (2008) Fermentative hydrogen production by the newly isolated Clostridium beijerinckii Fanp3. Int. J. Hydrogen Energy 33: 5383–5391.

    CAS  Article  Google Scholar 

  37. 37.

    Chen, W. M., Z. J. Tseng, K. S. Lee, and J. S. Chang (2005) Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int. J. Hydrogen Energy 30: 1063–1070.

    CAS  Article  Google Scholar 

  38. 38.

    Dada, O., W. M. W. Yusoff, and M. S. Kalil (2013) Biohydrogen production from rice bran using Clostridium saccharoperbutylacetonicum N1–4. Int. J. Hydrogen Energy 38: 15063–15073.

    Article  Google Scholar 

  39. 39.

    Lo, Y.C., M. D. Bai, W. M. Chen, and J. S. Chang (2008) Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresour. Technol. 99: 8299–8303.

    CAS  Article  Google Scholar 

  40. 40.

    Taguchi, F., J. D. Chang, S. Takiguchi, and M. Morimoto (1992) Efficient hydrogen production from starch by a bacterium isolated from termites. J. Ferment. Bioeng. 73: 244–245.

    CAS  Article  Google Scholar 

  41. 41.

    Levin, D. B., R. Islam, N. Cicek, and R. Sparling (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int. J. Hydrogen Energy 31: 1496–1503.

    CAS  Article  Google Scholar 

  42. 42.

    Wang, A., N. Ren, Y. Shi, and D. J. Lee (2008) Bioaugmented hydrogen production from microcrystalline cellulose using coculture Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int. J. Hydrogen Energy 33: 912–917.

    CAS  Article  Google Scholar 

  43. 43.

    Nguyen, T. A. D., J. P. Kim, M. S. Kim, Y. K. Oh, and S. J. Sim (2008) Optimization of hydrogen production by hyperthermophilic eubacteria, Thermotoga maritima and Thermotoga neapolitana in batch fermentation. Int. J. Hydrogen Energy 33: 1483–1438.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Min-Kyu Oh.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saratale, G.D., Kshirsagar, S.D., Saratale, R.G. et al. Fermentative hydrogen production using sorghum husk as a biomass feedstock and process optimization. Biotechnol Bioproc E 20, 733–743 (2015). https://doi.org/10.1007/s12257-015-0172-3

Download citation


  • sorghum husk
  • lignocellulosic biomass
  • biohydrogen
  • cellulolytic strain
  • enzyme saccharification
  • acid pretreatment