Skip to main content
Log in

In Vitro evaluation and monitoring of the expression level and localization of aldose reductase using functionalized quantum dots and EGFP

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The optimization of aldose reductase (AR) expression levels and tracking of the AR expression sites within the cell is an essential step in developing a platform for the effective production of aldose reductase inhibitors (ARIs). In this study, we have demonstrated the use of both immunocytochemistry and quantum dots-based immunofluorescence techniques for observing and detecting the expression level and localization of AR in the cytoplasm and cell membrane of a eukaryotic cell model with high levels of AR protein expression. Our results show that high expression levels of human AR can be achieved using the eukaryotic cell model that we have developed. The overexpressed AR can be used for translational studies of hAR and the screening of ARIs. More importantly, the use of the established quantum dots-based immunofluorescence technique in the intracellular labeling of AR allows the determination of the expression and distribution of the AR gene. Overall, the use of the interdisciplinary approach of both genetic engineering and quantum dot-based immunofluorescence allows not only the effective production of a desired protein, but also the determination of the cellular localization of such an expressed protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petrash, J. M.} (2004) All in the family: Aldose reductase and closely related aldo-keto reductases. Cell Mol. Life Sci. 61: 737–749.

    Article  CAS  Google Scholar 

  2. Lee, A. Y. and S. S. Chung (1999) Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 13: 23–30.

    CAS  Google Scholar 

  3. Obrosova, I. G. (2005) Increased sorbitol pathway activity generates oxidative stress in tissue sites for diabetic complications. Antioxid Redox Signal. 7: 1543–1552.

    Article  CAS  Google Scholar 

  4. Ramana, K. V. and S. K. Srivastava (2010) Aldose reductase: A novel therapeutic target for inflammatory pathologies. Int. J. Biochem. Cell Biol. 42: 17–20.

    Article  CAS  Google Scholar 

  5. Miller, S. I., R. K. Ernst, and M. W. Bader (2005) LPS, TLR4 and infectious disease diversity. Nat. Rev. Microbiol. 3: 36–46.

    Article  CAS  Google Scholar 

  6. Hotta, N., Y. Akanuma, R. Kawamori, K. Matsuoka, Y. Oka, M. Shichiri, T. Toyota, M. Nakashima, I. Yoshimura, N. Sakamoto, and Y. Shigeta (2006) Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on diabetic peripheral neuropathy: The 3-year, multicenter, comparative aldose reductase inhibitor-diabetes complications trial. Diabetes Care. 29: 1538–1544.

    Article  CAS  Google Scholar 

  7. Reddy, G. B., A. Satyanarayana, N. Balakrishna, R. Ayyagari, M. Padma, K. Viswanath, and J. M. Petrash (2008) Erythrocyte aldose reductase activity and sorbitol levels in diabetic retinopathy. Mol. Vis. 14: 593–601.

    CAS  Google Scholar 

  8. Kang, E. S., H. J. Kim, K. S. Paek, H. S. Jang, K. C. Chang, J. H. Lee, T. Nishinaka, C. Yabe-Nishimura, and H. G. Seo (2005) Phorbol ester up-regulates aldose reductase expression in A549 cells: A potential role for aldose reductase in cell cycle modulation. Cell Mol. Life Sci. 62: 1146–1155.

    Article  CAS  Google Scholar 

  9. Medintz, I. L., H. T. Uyeda, E. R. Goldman, and H. Mattoussi (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4: 435–446.

    Article  CAS  Google Scholar 

  10. Wu, X., H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. Ge, F. Peale, and M. P. Bruchez (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21: 41–46.

    Article  CAS  Google Scholar 

  11. Jaiswal, J. K., H. Mattoussi, J. M. Mauro and S. M. Simon (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21: 47–51.

    Article  CAS  Google Scholar 

  12. Gu, J., J. Yan, W. Wu, Q. Huang, and D. Ouyang (2010) Research progress in aldose reductase. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 35: 395–400.

    CAS  Google Scholar 

  13. Vedantham, S., H. Noh, R. Ananthakrishnan, N. Son, K. Hallam, Y. Hu, S. Yu, X. Shen, R. Rosario, Y. Lu, T. Ravindranath, K. Drosatos, L. A. Huggins, A. M. Schmidt, I. J. Goldberg, and R. Ramasamy (2011) Human aldose reductase expression accelerates atherosclerosis in diabetic apolipoprotein E-/-mice. Arterioscler Thromb. Vasc. Biol. 31: 1805–1813.

    Article  CAS  Google Scholar 

  14. Hasuike, Y., T. Nakanishi, Y. Otaki, M. Nanami, T. Tanimoto, N. Taniguchi, and Y. Takamitsu (2002) Plasma 3-deoxyglucosone elevation in chronic renal failure is associated with increased aldose reductase in erythrocytes. Am. J. Kidney Dis. 40: 464–471.

    Article  CAS  Google Scholar 

  15. Alexiou, P., K. Pegklidou, M. Chatzopoulou, I. Nicolaou, and V. J. Demopoulos (2009) Aldose reductase enzyme and its implication to major health problems of the 21(st) century. Curr. Med. Chem. 16: 734–752.

    Article  CAS  Google Scholar 

  16. Chen, X. P. and J. S. Shi (2012) HPLC-fluorescence detect the activity of aldose reductase. Chin. Pharmacol. Bull. 28: 1472–1475.

    CAS  Google Scholar 

  17. Du, M. M., J. Liu, B. Zhai, J. W. Liu, H. Yang, Z. H. Zhang, H. Yi, and L. Ye (2009) Construction and function study of a drug screening model based on aldose reductase gene and its inhibitor. Chin. Pharmacol. Bull. 25: 552–555.

    CAS  Google Scholar 

  18. Zhu, G. Q., Z. F. Wu, Y. F. Li, D. H. Hu, and Q. T. Wang (2006) Experimental study on dog's bone marrow stem cells transfected by pIRES2-EGFP-IGF-1 gene. Zhonghua Kou Qiang Yi Xue Za Zhi. 41: 739–742.

    CAS  Google Scholar 

  19. Hu, Z. Y., S. T. Qi, X. Zhang, Q. Cao, and B. Y. Wu (2009) Construction of delta-pIRES2-EGFP plasmid and its expression in HEK293 cells. Nan Fang Yi Ke Da Xue Xue Bao. 29: 1351–1353.

    CAS  Google Scholar 

  20. Scholz, O., A. Thiel, W. Hillen, and M. Niederweis (2000) Quantitative analysis of gene expression with an improved green fluorescent protein. p6. Europ. J. Biochem. / FEBS. 267: 1565–1570.

    Article  CAS  Google Scholar 

  21. Haverkamp, S., D. Inta, H. Monyer, and H. Wassle (2009) Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines. Neurosci. 160: 126–139.

    Article  CAS  Google Scholar 

  22. Chan, W. C. and S. Nie (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Sci. 281: 2016–2018.

    Article  CAS  Google Scholar 

  23. Bruchez, M. ffixJr, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos} (1998) Semiconductor nanocrystals as fluorescent biological labels. Sci.. 281: 2013–2016.

    Article  CAS  Google Scholar 

  24. Pitsillides, C. M., E. K. Joe, X. Wei, R. R. Anderson, and C. P. Lin (2003) Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys. J. 84: 4023–4032.

    Article  CAS  Google Scholar 

  25. Alivisatos, P. (2004) The use of nanocrystals in biological detection. Nat. Biotechnol. 22: 47–52.

    Article  CAS  Google Scholar 

  26. Yong, K. T. (2011) Anti-claudin-4-conjugated highly luminescent nanoparticles as biological labels for pancreatic cancer sensing. Meth. Mol. Biol. 762: 427–438.

    Article  CAS  Google Scholar 

  27. Monton, H., M. Roldan, A. Merkoci, E. Rossinyol, O. Castell, and C. Nogues (2012) The use of quantum dots for immunochemistry applications. Meth. Mol. Biol. 906: 185–192.

    CAS  Google Scholar 

  28. Plebani, A., L. D. Notarangelo, V. Monafo, L. Nespoli, and A. G. Ugazio (1984) A new immunoperoxidase assay for Lolium perenne-specific IgE in serum based on the biotin/avidin system (BAS). Clin. Aller. 14: 373–378.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ken-Tye Yong or Ling Ye.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, C., Liu, J. et al. In Vitro evaluation and monitoring of the expression level and localization of aldose reductase using functionalized quantum dots and EGFP. Biotechnol Bioproc E 20, 800–806 (2015). https://doi.org/10.1007/s12257-015-0022-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0022-3

Keywords

Navigation