Skip to main content
Log in

Electricity generation from retting wastewater consisting of recalcitrant compounds using continuous upflow microbial fuel cell

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recalcitrant compounds like phenol found in coconut husk retting effluent cause the deterioration of water quality when discharged from retting ponds into other water sources. Continuous upflow microbial fuel cell (MFC) was evaluated for treating retting wastewater at different loading rates to determine power generation, chemical oxygen demand (COD) consumption rate and phenol removal for a period of 270 days. A maximum power density of 254 mW/m2 was achieved during the treatment of retting wastewater (external resistance — 350Ω). COD removal of 70% was accomplished at a loading rate of 0.45 g COD/L reactor/day and phenol removal of 95% was obtained at a loading rate of 0.28 g phenol/L reactor/day. The power density exhibited an increasing pattern as the loading rate of MFC was increased from 0.45 to 2.69 g COD/L reactor/day. This study describes the treatment of retting wastewater employing continuous upflow MFC with 95% phenol removal. Therefore, MFC can be considered as an alternative for the efficient removal of phenol and current generation in retting wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Logan, B. E. and K. Rabaey (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337: 686–690.

    Article  CAS  Google Scholar 

  2. Pant, D., G. V. Bogaert, L. Diels, and K. Vanbroekhoven (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Biores. Technol. 101: 1533–1543.

    Article  CAS  Google Scholar 

  3. Urbaniec, K., A. Friedl, D. Huisingh, and P. Claassen (2010) Hydrogen for a sustainable global economy. J. Cleaner Pro. 18: S1-S3.

  4. Min, B., J. R. Kim, S. Oh, J. M. Regan, and B. E. Logan (2005) Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39: 4961–4968.

    Article  CAS  Google Scholar 

  5. Feng, Y., X. Wang, B. E Logan, and H. Lee (2008) Brewery wastewater treatment using air cathode microbial fuel cells. Appl. Microbiol. Biotechnol. 78: 873–880.

    Article  CAS  Google Scholar 

  6. Oh, S. and B E. Logan (2005) Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 39: 4673–4682.

    Article  CAS  Google Scholar 

  7. Veeresh, G. S., P. Kumar, and I. Mehrotra (2005) Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: A review. Water Res. 39: 154–170.

    Article  CAS  Google Scholar 

  8. Neena, C., P. S. Ambily, and M. S. Jisha (2007) Anaerobic degradation of coconut husk leachate using UASB-reactor. J. Environ. Biol. 28: 611–615.

    CAS  Google Scholar 

  9. Ravikumar, S., P. S. Parimala, and R. Gokulakrishnan (2011) Biodegradation of phenolic compounds by using halotolerant microbes. Int. J. Plant Animal Env. Sci. 1: 38–45.

    CAS  Google Scholar 

  10. Eaton, A. D., L. S. Clesceri, E. W. Rice, and A. E. Greenberg (2005) APHA/AWWA/WEF Standard methods for the examination of water and wastewater. American Public Health Association/American Water Works Association/Water Environment Federation. 21 st ed., Washington D. C, USA.

    Google Scholar 

  11. He, Z., S. D. Minteer, and L. T. Angenent (2005) Electricity Generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39: 5262–5267.

    Article  CAS  Google Scholar 

  12. Logan, B. E. (2008) Microbial Fuel Cells. pp. 48–50. Wiley, NJ, USA.

    Google Scholar 

  13. Hill, G. A. and C. W. Robinson (1975) Substrate inhibition kinetics: Phenol degradation by Pseudomonas putida. Biotechnol. Bioeng. 17: 1599–1615.

    Article  CAS  Google Scholar 

  14. Chan, O. C. and H. H. P. Fang (1997) Toxicity of phenol towards anaerobic biogranules. Water Res. 31: 2229–2242.

    Article  Google Scholar 

  15. Metcalf and Eddy (2003) Wastewater engineering treatment and reuse. 4th ed., McGraw Hill, NY, USA.

    Google Scholar 

  16. Rajesh Banu, J., S. Kaliappan, and I. T. Yeom (2007) Two — stage anaerobic treatment of dairy wastewater using HUASB with PUF and PVC carrier. Biotechnol. Bioproc. Eng. 12: 257–264.

    Article  Google Scholar 

  17. Rajesh Banu, J., K. U. Do, S. Kaliappan, and I. T. Yeom (2009) Effect of alum on nitrification during simultaneous phosphorous removal in anoxic/oxic reactor. Biotechnol. Bioproc. Eng. 14: 543–548.

    Article  Google Scholar 

  18. Luo, H., G. Liu, R. Zhang, and S. Jin (2009) Phenol degradation in microbial fuel cells. Chem. Eng. J. 147: 259–264.

    Article  CAS  Google Scholar 

  19. Uygur, A. and F. Kargi (2004) Phenol inhibition of biological nutrient removal in a four-step sequencing batch reactor. Proc. Biochem. 39: 2123–2128.

    Article  CAS  Google Scholar 

  20. Kim, J. R., J. Dec, M. A. Bruns, and B. E. Logan (2008) Removal of odors from swine wastewater by using microbial fuel cells. Appl. Environ. Microbiol. 74: 2540–2543.

    Article  CAS  Google Scholar 

  21. Behera, M., P. S. Jana, T. T. More, and M. M. Ghangrekar (2010) Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bio. Elec. Chem. 79: 228–233.

    CAS  Google Scholar 

  22. Arulazhagan, P. and N. Vasudevan (2009) Role of a moderately halophilic bacterial consortium in the biodegradation of polyaromatic hydrocarbons. Mar Pollut Bull 58: 256–262.

    Article  CAS  Google Scholar 

  23. Razika, B., B. Abbes, C. Messaoud, and K. Soufi (2010) Phenol and Benzoic Acid degradation by Pseudomonas aeruginosa. J. Water Res. and Prot 2: 788–791.

    Article  CAS  Google Scholar 

  24. Shah, M. P. (2014) Bioaugmentation of Pseudomonas aeruginosa in Microbial Degradation of P-Nitro Phenol. Int. J. Env. Biorem Biodegrad 2: 213–219.

    Google Scholar 

  25. Ramasamy. S., P. Mathiyalagan, and P. Chandran (2014) Characterization and optimization of EPS-producing and diesel oildegrading Ochrobactrum anthropi MP3 isolated from refinery wastewater. Petroleum Science 11: 439–445.

    Article  CAS  Google Scholar 

  26. Behera, M. and M. M. Ghangrekar (2009) Performance of MFC in response to change in SLR at different anodic feed pH. Bioresour. Technol. 100: 5114–5121.

    Article  CAS  Google Scholar 

  27. Kim, B. H., I. M. Chang, and G. M. Gadd (2007) Challenges in microbial fuel cell development and operation. Appl. Microbiol. Biotechnol. 76: 485–494.

    Article  CAS  Google Scholar 

  28. Rabaey, K., G. Lissens, S. Siciliano, and W. Verstraete (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol. Lett. 25: 1531–1535.

    Article  CAS  Google Scholar 

  29. Mohanakrishna, G., S. Venkata Mohan, and P. N. Sarma (2010) Bio-electrochemical treatment of distillery wastewater in microbial fuel cell facilitating decolorization and desalination along with power generation. J. Hazard. Mater. 177: 487–494.

    Article  CAS  Google Scholar 

  30. Rodrigo, M. A., P. Canizares, J. Lobato, R. Paz, and C. Sáez (2007) Production of electricity from the treatment of urban wastewater using a microbial fuel cell. J. Power Sources 169: 198–204.

    Article  CAS  Google Scholar 

  31. Lu, N., S. G. Zhou, L. Zhuang, and J. R. Ni (2009) Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochem. Eng. J. 43: 246–251.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rajesh Banu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayashree, C., Sweta, S., Arulazhagan, P. et al. Electricity generation from retting wastewater consisting of recalcitrant compounds using continuous upflow microbial fuel cell. Biotechnol Bioproc E 20, 753–759 (2015). https://doi.org/10.1007/s12257-015-0017-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0017-0

Keywords

Navigation