Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2


Use of photosynthetic bacteria to produce carotenoids has increased considerably in recent decades; however, few studies have been conducted to identify additional carotenoid producers. In this study, Rhodopseudomonas faecalis PA2 was shown to be capable of carotenoid production, and factors influencing this production were identified. The maximum carotenoid content was observed at an initial pH of 7 in the presence of 0.8% malic acid, 0.4% yeast extract, and 0.05% Fe3+ under light at 4,000 lux. Fe3+ significantly enhanced carotenogenesis, resulting in a production rate of 2.5 mg/g/day and a reduction in time to maximum production from 12 to 8 days. The carotenoid content and carotenoid yield under modified conditions were 413 mg/L and 13 mg/g (mg total carotenoids per gram of dry cells), respectively, representing an increase of 117% relative to the original condition. The biomass and carotenoid productivity reached 4 g/L/day and 51.6 mg/L/day, respectively. To the best of our knowledge, this is the first study of carotenoid production by Rps. faecalis PA2. The results indicated that the productivity of this organism under the aforementioned conditions was comparable to that of previously described purple photosynthetic bacterial species.

This is a preview of subscription content, access via your institution.


  1. 1.

    Asker, D. and Y. Ohta (1999) Production of canthaxanthin by extremely halophilic bacteria. J. Biosci. Bioeng. 88: 617–621.

    CAS  Article  Google Scholar 

  2. 2.

    Khaneja, R., L. Perez-Fons, S. Fakhry, L. Baccigalupi, S. Steiger, E. To, G. Sandmann, T. C. Dong, E. Ricca, P. D. Fraser, and S. M. Cutting (2010) Carotenoids found in Bacillus. J. Appl. Microbiol. 108: 1889–1902.

    CAS  Google Scholar 

  3. 3.

    Mata-Gomez, L. C., J. C. Montanez, A. Mendez-Zavala, and C. N. Aquilar (2014) Biotechnological production of carotenoids by yeasts: An overview. Microb. Cell. Fact. 13: 1–11.

    Article  Google Scholar 

  4. 4.

    Darvin, M. E., W. Sterry, J. Lademann, and T. Vergou (2011) The role of carotenoids in human skin. Molecules 16: 10491–10506.

    Article  Google Scholar 

  5. 5.

    Tanaka, T., M. Shnimizu, and H. Moriwaki (2012) Cancer chemoprevention by carotenoids. Molecules 17: 3202–3242.

    CAS  Article  Google Scholar 

  6. 6.

    Kumar, S. R., M. Hosokawa, and K. Miyashita (2013) Fucoxanthin: A marine carotenoid exerting anti-cancer effects by affecting multiple mechanisms. Mar. Drugs 11: 5130–5147.

    CAS  Article  Google Scholar 

  7. 7.

    Shegokar, R. and K. Mitri (2012) Carotenoid lutein: A promising candidate for pharmaceutical and nutraceutical applications. J. Diet. Suppl. 9: 183–210.

    CAS  Article  Google Scholar 

  8. 8.

    Brown, A. C., H. M. Leonard, K. J. McGraw, and E. D. Clotfelter (2013) Maternal effects of carotenoid supplementation in an ornamented cichlid fish. Funct. Ecol. 1–5.

    Google Scholar 

  9. 9.

    Aksu, Z. and A. Eren Tugba (2005) Carotenoids production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Proc. Biochem. 40: 2985–2991.

    CAS  Article  Google Scholar 

  10. 10.

    Hu, Z. C., Y. G. Zheng, Z. Wang, and Y. C. Shen (2007) Production of astaxanthin by Xanthophyllomonas dendrorhous ZJUT46 with fed-batch fermentation in 2.0 m3 fermentor. Food Technol. Biotechnol. 45: 209–212.

    CAS  Google Scholar 

  11. 11.

    Gu Z., D. Chen, Y. Han, Z. Chen, and F. Gu (2008) Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT 41: 1082–1088.

    CAS  Article  Google Scholar 

  12. 12.

    Takaichi, S. (2011) Carotenoids in algae: Distributions, biosyntheses and functions. Mar. Drugs 9: 1101–1118.

    CAS  Article  Google Scholar 

  13. 13.

    Takaichi, S. (1999) Carotenoids and carotenogenesis in anoxygenic photosynthetic bacteria. pp. 39–69. In: H. A. Frank, A. J. Young, G. Britton, and R. J. Cogdell (eds.). The Photochemistry of Carotenoids. Kluwer Academic Publisher, Dordrecht, The Netherlands.

    Google Scholar 

  14. 14.

    Wang, G., H. Grammel, K. Abou-Aisha, R. Sagesser, and R. Ghosh (2012) High-level production of the industrial product lycopene by the photosynthetic bacterium Rhodospirillum rubrum. Appl. Environ. Microbiol. 78: 7205–7215.

    CAS  Article  Google Scholar 

  15. 15.

    Noparatnaraporn, N. and S. Nagai (1986) Selection of Rhodobactor sphaeroides P47 as useful source of single cell protein. J. Gen. Appl. Microbiol. 32: 351–359.

    CAS  Article  Google Scholar 

  16. 16.

    Chen, D., Y. Han, and Z. Gu (2006) Application of statistical methodology of the optimization of fermentative medium for carotenoids production by Rhodobacter sphaeroides. Proc. Biochem. 41: 1773–1778.

    CAS  Article  Google Scholar 

  17. 17.

    Kuo, F. H., Y. H. Chien, and C. J. Chen (2012) Effects of light sources on growth and carotenoid content of photosynthetic bacteria Rhodopseudomonas palustris. Bioresour. Technol. 113: 315–318.

    CAS  Article  Google Scholar 

  18. 18.

    Zhang, D., H. Yang, Z. Huang, W. Zhang, and S. J. Liu (2002) Rhodopseudomonas faecalis sp. nov., a phototrophic bacterium isolated from an anaerobic reactor that digests chicken faeces. Int. J. Syst. Evol. Microbiol. 52: 2055–2060.

    CAS  Google Scholar 

  19. 19.

    Liu, B., G. Xie, W. Guo, J. Ding, and N. Ren (2011) Optimization of Photo-Hydrogen Production by Immobilized Rhodopseudomonas faecalis RLD-53. Nat. Resour. 2: 1–7. doi: 10.4236/nr.2011.21001.

    Google Scholar 

  20. 20.

    Xie, G., B. Liu, D. Xing, J. Nan, J. Ding, H. Ren, W. Guo, and N. Ren (2012) Photo-hydrogen production by Rhodopseudomonas faecalis RLD-53 immobilized on the surface of modified activated carbon fibers. RSC Adv. 2: 2225–2228.

    CAS  Article  Google Scholar 

  21. 21.

    Hong, H. Y., B. Liu, J. Ding, J. Nan, G. Xie, L. Zhao, M. Chen, and N. Ren (2012) Enhanced photo-hydrogen production of Rhodopseudomonas faecalis RLD-53 by EDTA addition. Int. J. Hydrogen Energy 37: 8277–8281.

    Article  Google Scholar 

  22. 22.

    Noparatnaraporn, N., K. Sasaki, Y. Nishizawa, and S. Nagai (1986) Stimulation of vitamin B12 formation in aerobicallygrown Rhodopseudomonas gelatinosa under microaerobic condition. Biotechnol. Lett. 8: 491–496.

    CAS  Article  Google Scholar 

  23. 23.

    Hirayama, O. (1968) Lipids and lipoprotein complex in photosynthetic tissue: 4 lipid and pigments of photosynthetic bacteria. Agric. Biol. Chem. 32: 34–41.

    CAS  Article  Google Scholar 

  24. 24.

    An, G., J. Bielich, R. Auerbach, and E. A. Johnson (1991) Isolation and characterization of carotenoid hyperproducing mutants of yeast by flow cytometry and cell sorting. Nat. Biotechnol. 9: 70–73.

    CAS  Article  Google Scholar 

  25. 25.

    Latha, B. V., K. Jeevaratnam, H. S. Murali, and K. S. Manja (2005) Influence of growth factors on carotenoid pigmentation of Rhodotorula glutinis DER-PDY from natural source. Indian J. Biotechnol. 4: 353–357.

    CAS  Google Scholar 

  26. 26.

    Ainon, H., C. J. Tan, and S. Vikineswary. (2006) Biological Characterization of Rhodomicrobium vannielii isolated from a hot spring at Gadek, Malacca, Malaysia. Malays. J. Microbiol. 2: 15–21.

    Google Scholar 

  27. 27.

    Cheirsilp, B. and S. Torpee (2012) Enhaced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110: 510–516.

    CAS  Article  Google Scholar 

  28. 28.

    Hosseini Tafreshi, A. and M. Shariati (2009) Dunaliella biotechnology: methods and applications. J. Appl. Microbiol. 107: 14–35.

    CAS  Article  Google Scholar 

  29. 29.

    Kobayashi, M. K., N. M. Toshihide, and S. Nagai (1992) Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J. Ferment. Bioeng. 74: 61–63.

    CAS  Article  Google Scholar 

  30. 30.

    Bhosale, P. and R. V. Gadre (2002) Manipulation of temperature and illumination conditions for enhanced ß-carotene production by mutant 32 of Rhodotorula glutinis. Lett. Appl. Microbiol. 34: 349–353.

    CAS  Article  Google Scholar 

  31. 31.

    Alcantara, S. and S. Sanchez (1999) Influence of carbon and nitrogen sources on Flavobacterium growth and zeaxanthin biosynthesis. J. Ind. Microbiol. Biotechnol. 23: 697–700.

    CAS  Article  Google Scholar 

  32. 32.

    Bhosale, P., A. J. Larson, and P. S. Bernstein (2004) Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum. J. Appl. Microbiol. 96: 623–629.

    CAS  Article  Google Scholar 

  33. 33.

    Higuchi, M. and G. Kikuchi (1963) Synthesis of bacteriochlorophyll by Rhodopseudomonas spheroids under dark-aerobic conditions. Nature 200: 1191–1192.

    CAS  Article  Google Scholar 

  34. 34.

    Castenholz, R. M. W. (1973) The possible photosynthetic use of sulfide by the filamentous phototrophic bacteria of hot springs. Limnol. Oceanogr. 18: 863–876.

    CAS  Article  Google Scholar 

  35. 35.

    Goodwin, T. W. (1980) The Biochemistry of Carotenoids. Chapman and Hall, London, UK.

    Google Scholar 

  36. 36.

    Bhosale, P. (2004) Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol. 63: 351–361.

    CAS  Article  Google Scholar 

  37. 37.

    Tjahjono, A. E., Y. Hayama, T. Kakizono, Y. Terada, N. Nishio, and S. Nagai (1994) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol. Lett. 16: 133–138.

    CAS  Article  Google Scholar 

  38. 38.

    Buzzini, P., A. Martini, M. Gaetani, B. Turchetti, U. M. Pagnoni, and P. Davoli (2005) Optimization of carotenoid production by Rhodotorula glutinis DBVPG7021 as a function of trace element concentration by means of response surface analysis. Enz. Microb. Technol. 36: 687–692.

    CAS  Article  Google Scholar 

  39. 39.

    Komemushi, S., H. Sakaki, H. Yokohama, and T. Fujita (1994) Effect of barium and other metals on the growth of a D-lactic acid assimilating yeast Rhodotorula glutinis N21. J. Antibact. Antifung. Agt. 22: 583–587.

    CAS  Google Scholar 

  40. 40.

    Zhou, Q., P. Zhang, and G. Zhang (2014) Biomass and carotenoid production in photosynthetic bacteria wastewater treatment: Effects of light intensity. Bioresour. Technol. 171: 330–335.

    CAS  Article  Google Scholar 

  41. 41.

    Goksan, T., Y. Dumaz, and S. Gokpinar (2003) Effect of light paths lengths and initial culture density on the cultivation of Chaetoceros muelleri (Lemmermann, 1898). Aquaculture 217: 431–436.

    Article  Google Scholar 

  42. 42.

    Jalal, K. C. A., Z. A. Zaima, A. Zira, Z. Nor Hafizah, M. M. Rahman, B. Y. Kamaruzzaman, and H. N. Noor Faizul (2014) Carotenoid contents in anoxygenic phototrophic purple bacteria, Marichromatium sp. and Rhodopseudomonas sp. of tropical aquatic environment. Malay. Orient. J. Chem. 30: 607–613.

    CAS  Article  Google Scholar 

  43. 43.

    Getha, K., S. Vikineswary, and V. C. Chong (1998) Isolation and growth of the phototrophic bacterium Rhodopseudomonas palustris strain B1 in sago-starch-processing wastewater. World J. Microbiol. Biotechnol. 14: 505–511.

    Article  Google Scholar 

  44. 44.

    Prasertsan, P., W. Choorit, and S. Suwanno (1993) Optimization for growth of Rhodocyclus gelatinosus in seafood processing effluents. World J. Microbiol. Biotechnol. 9: 593–596.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Chewapat Saejung.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saejung, C., Apaiwong, P. Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnol Bioproc E 20, 701–707 (2015). https://doi.org/10.1007/s12257-015-0015-2

Download citation


  • carotenoid
  • photosynthetic bacteria
  • Rhodopseudomonas faecalis
  • anoxygenic condition
  • carotenogenesis