Advertisement

Biotechnology and Bioprocess Engineering

, Volume 20, Issue 4, pp 643–651 | Cite as

Aerobic denitrification: A review of important advances of the last 30 years

  • Bin Ji
  • Kai Yang
  • Lei Zhu
  • Yu Jiang
  • Hongyu Wang
  • Jun Zhou
  • Huining Zhang
Review Paper

Abstract

Understanding aerobic denitrification has become an important focus of environmental microbiology. Aerobic denitrification can be performed by various genera of microorganisms and describes the use of nitrate (NO 3 - ) as oxidizing agents under an aerobic atmosphere. Isolation of aerobic denitrifiers, enzymes involved in aerobic denitrifiers, phylogenetic distribution of aerobic denitrifiers, factors affecting the performance of aerobic denitrifiers, attempts of applications and possible future trends are depicted. The periplasmic nitrate reductase is vital for aerobic denitrifiers and NapA gene may be the proof of aerobic denitrification. Phylogenetic analysis revealed that aerobic denitrifiers mainly belong to α-, β- and γ-Proteobacteria. Aerobic denitrifiers tend to work efficiently at 25 ~ 37°C and pH 7 ~ 8, when dissolved oxygen concentration is 3 ~ 5 mg/L and C/N load ratio is 5 ~ 10. In addition, recent progresses and applications on aerobic denitrifiers are described, including single aerobic reactors, sequencing batch reactor and biofilm reactors. The review attempts to shed light on the fundamental understanding in aerobic denitrification.

Keywords

aerobic denitrification Pseudomonas stutzeri periplasmic nitrate reductase evolutionary tree Proteobacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Seifi, M. and M. H. Fazaelipoor (2012) Modeling simultaneous nitrification and denitrification (SND) in a fluidized bed biofilm reactor. Appl. Math. Model. 36: 5603–5613.CrossRefGoogle Scholar
  2. 2.
    Joo, H., M. Hirai, and M. Shoda (2005) Characteristics of ammonium removal by heterotrophic nitrification-aerobic denitrification by Alcaligenes faecalis No. 4. J. Biosci. Bioeng. 100: 184–191.CrossRefGoogle Scholar
  3. 3.
    Padhi, S. K., S. Tripathy, R. Sen, A. S. Mahapatra, S. Mohanty, and N. K. Maiti (2013) Characterisation of heterotrophic nitrifying and aerobic denitrifying Klebsiella pneumoniae CF-S9 strain for bioremediation of wastewater. Int. Biodeter. Biodegr. 78: 67–73.CrossRefGoogle Scholar
  4. 4.
    Zhang, J., P. Wu, B. Hao, and Z. Yu (2011) Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 102: 9866–9869.CrossRefGoogle Scholar
  5. 5.
    Robertson, L. A. and J. G. Kuenen (1984) Aerobic denitrification—old wine in new bottles? Antonie Van Leeuwenhoek 50: 525–544.CrossRefGoogle Scholar
  6. 6.
    Ludwig, W., G. Mittenhuber, and C. G. Friedrich (1993) Transfer of Thiosphaera pantotropha to Paracoccus denitrificans. Int. J. Syst. Bacteriol. 43: 363–367.CrossRefGoogle Scholar
  7. 7.
    Robertson, L. A., E. W. van Niel, R. A. Torremans, and J. G. Kuenen (1988) Simultaneous nitrification and denitrification in aerobic chemostat cultures of Thiosphaera pantotropha. Appl. Environ. Microbiol. 54: 2812–2818.Google Scholar
  8. 8.
    Lukow, T. and H. Diekmann (1997) Aerobic denitrification by a newly isolated heterotrophic bacterium strain TL1. Biotechnol. Lett. 19: 1157–1159.CrossRefGoogle Scholar
  9. 9.
    Kong, Q. X., X. W. Wang, M. Jin, Z. Q. Shen, and J. W. Li (2006) Development and application of a novel and effective screening method for aerobic denitrifying bacteria. FEMS Microbiol. Lett. 260: 150–155.CrossRefGoogle Scholar
  10. 10.
    Chen, Q. and J. Ni (2011) Heterotrophic nitrification-aerobic denitrification by novel isolated bacteria. J. Ind. Microbiol. Biotechnol. 38: 1305–1310.CrossRefGoogle Scholar
  11. 11.
    Yao, S., J. Ni, T. Ma, and C. Li (2013) Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, Acinetobacter sp. HA2. Bioresour. Technol. 139: 80–86.CrossRefGoogle Scholar
  12. 12.
    Ji, B., H. Wang, and K. Yang (2014) Tolerance of an aerobic denitrifier (Pseudomonas stutzeri) to high O2 concentrations. Biotechnol. Lett. 36: 719–722.CrossRefGoogle Scholar
  13. 13.
    Patureau, D., J. Davison, N. Bernet, and R. Moletta (1994) Denitrification under various aeration conditions in Comamonas sp., strain SGLY2. FEMS Microbiol. Ecol. 14: 71–78.CrossRefGoogle Scholar
  14. 14.
    Kim, J. K., K. J. Park, K. S. Cho, S. Nam, T. Park, and R. Bajpai (2005) Aerobic nitrification-Cdenitrification by heterotrophic Bacillus strains. Bioresour. Technol. 96: 1897–1906.CrossRefGoogle Scholar
  15. 15.
    Su, J. J., B. Y. Liu, and C. Y. Liu (2001) Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system. J. Appl. Microbiol. 90: 457–462.CrossRefGoogle Scholar
  16. 16.
    Chen, P., J. Li, Q. X. Li, Y. Wang, S. Li, T. Ren, and L. Wang (2012) Simultaneous heterotrophic nitrification and aerobic denitrification by bacterium Rhodococcus sp. CPZ24. Bioresour. Technol. 116: 266–270.CrossRefGoogle Scholar
  17. 17.
    Huang, H. K. and S. K. Tseng (2001) Nitrate reduction by Citrobacter diversus under aerobic environment. Appl. Microbiol. Biot. 55: 90–94.CrossRefGoogle Scholar
  18. 18.
    Okada, N. N. N. K. (2005) Characterization of the aerobic denitrification in Mesorhizobium sp. strain NH-14 in comparison with that in related Rhizobia. Microbes Environ. 20: 208–215.Google Scholar
  19. 19.
    Nakano, M., T. Inagaki, S. Okunishi, R. Tanaka, and H. Maeda (2010) Effect of salinity on denitrification under limited single carbon source by Marinobacter sp. isolated from marine sediment. J. Basic Microbiol. 50: 285–289.CrossRefGoogle Scholar
  20. 20.
    Guo, Y., X. Zhou, Y. Li, K. Li, C. Wang, J. Liu, D. Yan, Y. Liu, D. Yang, and J. Xing (2013) Heterotrophic nitrification and aerobic denitrification by a novel Halomonas campisalis. Biotechnol. Lett. 35: 2045–2049.CrossRefGoogle Scholar
  21. 21.
    Frette, L., B. Gejlsbjerg, and P. Westermann (1997) Aerobic denitrifiers isolated from an alternating activated sludge system. Fems Microbiol. Ecol. 24: 363–370.CrossRefGoogle Scholar
  22. 22.
    Gao, H., F. Schreiber, G. Collins, M. M. Jensen, O. Svitlica, J. E. Kostka, G. Lavik, D. de Beer, H. Y. Zhou, and M. M. Kuypers (2010) Aerobic denitrification in permeable Wadden Sea sediments. ISME J. 4: 417–426.CrossRefGoogle Scholar
  23. 23.
    Takaya, N., M. A. Catalan-Sakairi, Y. Sakaguchi, I. Kato, Z. Zhou, and H. Shoun (2003) Aerobic denitrifying bacteria that produce low levels of nitrous oxide. Appl. Environ. Microbiol. 69: 3152–3157.CrossRefGoogle Scholar
  24. 24.
    Gupta, S. K. and M. Kshirsagar (2000) Quantitative estimation of Thiosphaera pantotropha from aerobic mixed culture. Water Res. 34: 3765–3768.CrossRefGoogle Scholar
  25. 25.
    Kong, Q. X., X. W. Wang, M. Jin, Z. Q. Shen, and J. W. Li (2006) Development and application of a novel and effective screening method for aerobic denitrifying bacteria. Fems Microbiol. Lett. 260: 150–155.CrossRefGoogle Scholar
  26. 26.
    Zhu, L., W. Ding, L. Feng, Y. Kong, J. Xu, and X. Xu (2012) Isolation of aerobic denitrifiers and characterization for their potential application in the bioremediation of oligotrophic ecosystem. Bioresour. Technol. 108: 1–7.CrossRefGoogle Scholar
  27. 27.
    Simon, J. and M. G. Klotz (2013) Diversity and evolution of bioenergetic systems involved in microbial nitrogen compound transformations. Biochimica et Biophysica Acta (BBA) — Bioenergetics 1827: 114–135.Google Scholar
  28. 28.
    Bell, L. C., D. J. Richardson, and S. J. Ferguson (1990) Periplasmic and membrane-bound respiratory nitrate reductases in Thiosphaera pantotropha: The periplasmic enzyme catalyzes the first step in aerobic denitrification. Febs Lett. 265: 85–87.CrossRefGoogle Scholar
  29. 29.
    Morozkina, E. V. and R. A. Zvyagilskaya (2007) Nitrate reductases: Structure, functions, and effect of stress factors. Biochem. 72: 1151–1160.Google Scholar
  30. 30.
    Sparacino-Watkins, C., J. F. Stolz, and P. Basu (2014) Nitrate and periplasmic nitrate reductases. Chem. Soc. Rev. 43: 676–706.CrossRefGoogle Scholar
  31. 31.
    Oguz, M. T., K. G. Robinson, A. C. Layton, and G. S. Sayler (2007) Concurrent nitrite oxidation and aerobic denitrification in activated sludge exposed to volatile fatty acids. Biotechnol. Bioeng. 97: 1562–1572.CrossRefGoogle Scholar
  32. 32.
    Feng, W., J. Liu, J. Gu, and B. Mu (2011) Nitrate-reducing community in production water of three oil reservoirs and their responses to different carbon sources revealed by nitrate-reductase encoding gene (napA). Int. Biodeter. Biodegr. 65: 1081–1086.CrossRefGoogle Scholar
  33. 33.
    Chen, J. and M. Strous (2013) Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochimica et Biophysica Acta (BBA) — Bioenergetics 1827: 136–144.CrossRefGoogle Scholar
  34. 34.
    Nojiri, M., H. Koteishi, T. Nakagami, K. Kobayashi, T. Inoue, K. Yamaguchi, and S. Suzuki (2009) Structural basis of inter-protein electron transfer for nitrite reduction in denitrification. Nature 462: 117–120.CrossRefGoogle Scholar
  35. 35.
    Heylen, K., D. Gevers, B. Vanparys, L. Wittebolle, J. Geets, N. Boon, and P. De Vos (2006) The incidence of nirS and nirK and their genetic heterogeneity in cultivated denitrifiers. Environ. Microbiol. 8: 2012–2021.CrossRefGoogle Scholar
  36. 36.
    Ashida, N., S. Ishii, S. Hayano, K. Tago, T. Tsuji, Y. Yoshimura, S. Otsuka, and K. Senoo (2010) Isolation of functional single cells from environments using a micromanipulator: Application to study denitrifying bacteria. Appl. Microbiol. Biotechnol. 85: 1211–1217.CrossRefGoogle Scholar
  37. 37.
    Song, Z. F., J. An, G. H. Fu, and X. L. Yang (2011) Isolation and characterization of an aerobic denitrifying Bacillus sp. YX-6 from shrimp culture ponds. Aquacult. 319: 188–193.CrossRefGoogle Scholar
  38. 38.
    Fujiwara, T. and Y. Fukumori (1996) Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512. J. Bacteriol. 178: 1866–1871.Google Scholar
  39. 39.
    Kraft, B., M. Strous, and H. E. Tegetmeyer (2011) Microbial nitrate respiration—genes, enzymes and environmental distribution. J. Biotechnol. 155: 104–117.CrossRefGoogle Scholar
  40. 40.
    Orellana, L. H., L. M. Rodriguez-R, S. Higgins, J. C. Chee-Sanford, R. A. Sanford, K. M. Ritalahti, F. E. Loffler, and K. T. Konstantinidis (2014) Detecting nitrous oxide reductase (NosZ) genes in soil metagenomes: method development and implications for the nitrogen cycle. MBio 5: e1114–e1193.CrossRefGoogle Scholar
  41. 41.
    Zheng, M., D. He, T. Ma, Q. Chen, S. Liu, M. Ahmad, M. Gui, and J. Ni (2014) Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1. Bioresour. Technol. 162: 80–88.CrossRefGoogle Scholar
  42. 42.
    Wan, C., X. Yang, D. Lee, M. Du, F. Wan, and C. Chen (2011) Aerobic denitrification by novel isolated strain using as nitrogen source. Bioresour. Technol. 102: 7244–7248.CrossRefGoogle Scholar
  43. 43.
    Zhou, M., H. Ye, and X. Zhao (2014) Isolation and characterization of a novel heterotrophic nitrifying and aerobic denitrifying bacterium Pseudomonas stutzeri KTB for bioremediation of wastewater. Biotechnol. Bioproc. Eng. 19: 231–238.CrossRefGoogle Scholar
  44. 44.
    Takenaka, S., Q. Zhou, A. Kuntiya, P. Seesuriyachan, S. Murakami, and K. Aoki (2007) Isolation and characterization of thermotolerant bacterium utilizing ammonium and nitrate ions under aerobic conditions. Biotechnol. Lett. 29: 385–390.CrossRefGoogle Scholar
  45. 45.
    Zhang, Q., Y. Liu, G. Ai, L. Miao, H. Zheng, and Z. Liu (2012) The characteristics of a novel heterotrophic nitrification — aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour. Technol. 108: 35–44.CrossRefGoogle Scholar
  46. 46.
    Hartsock, A. and J. P. Shapleigh (2011) Physiological roles for two periplasmic nitrate reductases in Rhodobacter sphaeroides 2.4.3 (ATCC 17025). J. Bacteriol. 193: 6483–6489.CrossRefGoogle Scholar
  47. 47.
    Verbaendert, I., N. Boon, P. De Vos, and K. Heylen (2011) Denitrification is a common feature among members of the genus Bacillus. Syst. Appl. Microbiol. 34: 385–391.CrossRefGoogle Scholar
  48. 48.
    Baek, S. H. and J. P. Shapleigh (2005) Expression of nitrite and nitric oxide reductases in free-living and plant-associated Agrobacterium tumefaciens C58 cells. Appl. Environ. Microbiol. 71: 4427–4436.CrossRefGoogle Scholar
  49. 49.
    Bergaust, L., J. Shapleigh, A. Frostegard, and L. Bakken (2008) Transcription and activities of NOx reductases in Agrobacterium tumefaciens: The influence of nitrate, nitrite and oxygen availability. Environ. Microbiol. 10: 3070–3081.CrossRefGoogle Scholar
  50. 50.
    Patureau, D., N. Bernet, J. P. Delgenes, and R. Moletta (2000) Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. Appl. Microbiol. Biotechnol. 54: 535–542.CrossRefGoogle Scholar
  51. 51.
    Wilson, L. P. and E. J. Bouwer (1997) Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J. Ind. Microbiol. Biotechnol. 18: 116–130.CrossRefGoogle Scholar
  52. 52.
    Ka, J. O., J. Urbance, R. W. Ye, T. Y. Ahn, and J. M. Tiedje (1997) Diversity of oxygen and N-oxide regulation of nitrite reductases in denitrifying bacteria. Fems Microbiol. Lett. 156: 55–60.CrossRefGoogle Scholar
  53. 53.
    Chen, Q. and J. Ni (2012) Ammonium removal by Agrobacterium sp. LAD9 capable of heterotrophic nitrification — aerobic denitrification. J. Biosci. Bioeng. 113: 619–623.Google Scholar
  54. 54.
    Yang, X., S. Wang, D. Zhang, and L. Zhou (2011) Isolation and nitrogen removal characteristics of an aerobic heterotrophic nitrifying-Cdenitrifying bacterium, Bacillus subtilis A1. Bioresour. Technol. 102: 854–862.CrossRefGoogle Scholar
  55. 55.
    Yang, X., S. Wang, and L. Zhou (2012) Effect of carbon source, C/N ratio, nitrate and dissolved oxygen concentration on nitrite and ammonium production from denitrification process by Pseudomonas stutzeri D6. Bioresour. Technol. 104: 65–72.CrossRefGoogle Scholar
  56. 56.
    Zhang, J., P. Wu, B. Hao, and Z. Yu (2011) Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresour. Technol. 102: 9866–9869.CrossRefGoogle Scholar
  57. 57.
    Taylor, S. M., Y. He, B. Zhao, and J. Huang (2009) Heterotrophic ammonium removal characteristics of an aerobic heterotrophic nitrifying-denitrifying bacterium, Providencia rettgeri YL. J. Environ. Sci. (China) 21: 1336–1341.CrossRefGoogle Scholar
  58. 58.
    Kim, M., S. Jeong, S. J. Yoon, S. J. Cho, Y. H. Kim, M. J. Kim, E. Y. Ryu, and S. Lee (2008) Aerobic Denitrification of Pseudomonas putida AD-21 at Different C/N Ratios. J. Biosci. Bioeng. 106: 498–502.CrossRefGoogle Scholar
  59. 59.
    Robertson, L. A., R. Cornelisse, P. De Vos, R. Hadioetomo, and J. G. Kuenen (1989) Aerobic denitrification in various heterotrophic nitrifiers. Antonie Van Leeuwenhoek 56: 289–299.CrossRefGoogle Scholar
  60. 60.
    Xie, S. G., X. J. Zhang, and Z. S. Wang (2003) Temperature effect on aerobic denitrification and nitrification. J. Environ. Sci. 15: 669–673.Google Scholar
  61. 61.
    Saleh-Lakha, S., K. E. Shannon, S. L. Henderson, C. Goyer, J. T. Trevors, B. J. Zebarth, and D. L. Burton (2009) Effect of pH and temperature on denitrification gene expression and activity in Pseudomonas mandelii. Appl. Environ. Microbiol. 75: 3903–3911.CrossRefGoogle Scholar
  62. 62.
    Thomas, K. L., D. Lloyd, and L. Boddy (1994) Effects of oxygen, pH and nitrate concentration on denitrification by Pseudomonas species. Fems Microbiol. Lett. 118: 181–186.CrossRefGoogle Scholar
  63. 63.
    Kshirsagar, M. G. A. B. G.(1995) Aerobic denitrification studies on activated sludge mixed with Thiosphaera pantotropha. Environ. Technol. 16: 35–43.CrossRefGoogle Scholar
  64. 64.
    Patureau, D., N. Bernet, and R. Moletta (1997) Combined nitrification and denitrification in a single aerated reactor using the aerobic denitrifier Commonas sp. strain SGLY2. Water Res. 31: 1363–1370.CrossRefGoogle Scholar
  65. 65.
    Pai, S., N. Chong, and C. Chen (1999) Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment. Bioresour. Technol. 68: 179–185.CrossRefGoogle Scholar
  66. 66.
    Patureau, D., E. Helloin, E. Rustrian, T. Bouchez, J. P. Delgenes, and R. Moletta (2001) Combined phosphate and nitrogen removal in a sequencing batch reactor using the aerobic denitrifier, Microvirgula aerodenitrificans. Water Res. 35: 189–197.CrossRefGoogle Scholar
  67. 67.
    Joo, H., M. Hirai, and M. Shoda (2006) Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification. Water Res. 40: 3029–3036.CrossRefGoogle Scholar
  68. 68.
    Oguz, M. T., K. G. Robinson, A. C. Layton, and G. S. Sayler (2007) Concurrent nitrite oxidation and aerobic denitrification in activated sludge exposed to volatile fatty acids. Biotechnol. Bioeng. 97: 1562–1572.CrossRefGoogle Scholar
  69. 69.
    Gupta, A. B. and S. K. Gupta (2001) Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm. Water Res. 35: 1714–1722.CrossRefGoogle Scholar
  70. 70.
    Ji, B., H. Wang, and K. Yang (2014) Nitrate and COD removal in an upflow biofilter under an aerobic atmosphere. Bioresour. Technol. 158: 156–160.CrossRefGoogle Scholar
  71. 71.
    Jiang, R., S. Huang, A. T. Chow, and J. Yang (2009) Nitric oxide removal from flue gas with a biotrickling filter using Pseudomonas putida. J. Hazard. Mater. 164: 432–441.CrossRefGoogle Scholar
  72. 72.
    Huang, G., H. Fallowfield, H. Guan, and F. Liu (2012) Remediation of nitrate-nitrogen contaminated groundwater by a heterotrophic-autotrophic denitrification approach in an aerobic environment. Water, Air, & Soil Pollution 223: 4029–4038.CrossRefGoogle Scholar
  73. 73.
    Critchley, K., D. L. Rudolph, J. F. Devlin, and P. C. Schillig (2014) Stimulating in situ denitrification in an aerobic, highly permeable municipal drinking water aquifer. J. Contam. Hydrol. 171: 66–80.CrossRefGoogle Scholar
  74. 74.
    Zheng, H., Y. Liu, G. Sun, X. Gao, Q. Zhang, and Z. Liu (2011) Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium. J. Environ. Sci. 23: 1888–1893.CrossRefGoogle Scholar
  75. 75.
    Schreiber, F., P. Stief, A. Gieseke, I. M. Heisterkamp, W. Verstraete, D. de Beer, and P. Stoodley (2010) Denitrification in human dental plaque. BMC Biol. 8:24.CrossRefGoogle Scholar
  76. 76.
    Gunther, S., M. Trutnau, S. Kleinsteuber, G. Hause, T. Bley, I. Roske, H. Harms, and S. Muller (2009) Dynamics of polyphosphate-accumulating bacteria in wastewater treatment plant microbial communities detected via DAPI (4′,6′-diamidino-2-phenylindole) and tetracycline labeling. Appl. Environ. Microbiol. 75: 2111–2121.CrossRefGoogle Scholar
  77. 77.
    Nguyen, H. T., J. L. Nielsen, and P. H. Nielsen (2012) ‘Candidatus Halomonas phosphatis’, a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants. Environ. Microbiol. 14: 2826–2837.CrossRefGoogle Scholar
  78. 78.
    Xu, Y., Z. Xu, Z. Cai, and F. Reverchon (2013) Review of denitrification in tropical and subtropical soils of terrestrial ecosystems. J. Soil. Sediment 13: 699–710.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bin Ji
    • 1
  • Kai Yang
    • 2
  • Lei Zhu
    • 1
  • Yu Jiang
    • 2
  • Hongyu Wang
    • 2
  • Jun Zhou
    • 2
  • Huining Zhang
    • 2
  1. 1.School of Urban ConstructionWuhan University of Science and TechnologyWuhanChina
  2. 2.School of Civil EngineeringWuhan UniversityWuhanChina

Personalised recommendations