Skip to main content
Log in

Enhanced acetone-butanol production from sugarcane juice by immobilized Clostridium acetobutylicum (ATCC 824) on thin-shell silk cocoons

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

To promote its performance during acetone-butanol-ethanol (ABE) fermentation, Clostridium acetobutylicum (ATCC 824) was immobilized on a thin-shell silk cocoon (TSC). As a residual from the silk industry, TSC offers a cheap, biocompatible support material. The adsorbed C. acetobutylicum cells digested the TSCs into amino acids as a nitrogen source. It was shown that TSC might promote the phase shift to acetone in the ABE fermentation. At an initial reducing sugar concentration of 90 g/L, the ABE productivity of the immobilized cell culture on TSC (IC-TSC) in batch fermentation was 0.18 g/L/h, and the solvent mixture comprised 6.1 g/L acetone, 15.9 g/L butanol, and 1.9 g/L ethanol. Repeated 4-cycle batch fermentation using IC-TSC significantly improved the ABE productivity. After 48 h of cyclic fermentation, the maximum ABE productivity was 0.43 g/L/h with acetone, butanol and ethanol concentrations of 6.6, 12.9, and 1.1 g/L, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sukumaran, R. K., L. D. Gottumukkala, K. Rajasree, D. Alex, and A. Pandey (2011) Butanol fuel from biomass: Revisiting ABE fermentation. pp. 571–586. In: A. Pandey, C. Larroche, S. C Ricke, C.-G. Dussap, and E. Gnansounou (eds.). Biofuels Alternative Feedstocks and Conversion Processes. Academic Press, Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  2. Qureshi, N., B. C. Saha, B. Dien, R. E. Hector, and M. A. Cotta (2010) Production of butanol (a biofuel) from agricultural residues: Part I–Use of barley straw hydrolysate. Biomass Bioenerg. 34: 559–565.

    Article  CAS  Google Scholar 

  3. Szwaja, S. and J. D. Naber (2010) Combustion of n-butanol in a spark-ignition IC engine. Fuel 89: 1573–1582.

    Article  CAS  Google Scholar 

  4. Sengupta, D. and R. W. Pike (2012) Chemicals from biomass, pp. 1043–1090. In: W.-Y. Chen, J. Seiner, T. Suzuki, and M. Lackner (eds.). Handbook of Climate Change Mitigation. Springer, New York, USA.

    Chapter  Google Scholar 

  5. Jin, C., M. Yao, H. Liu, C.-F. F. Lee, and J. Ji (2011) Progress in the production and application of n-butanol as a biofuel. Renew. Sust. Energ. Rev. 15: 4080–4106.

    Article  CAS  Google Scholar 

  6. Phisalaphong, M., R. Budiraharjo, P. Bangrak, J. Mongkolkajit, and S. Limtong (2007) Alginate-loofa as carrier matrix for ethanol production. J. Biosci. Bioeng. 104: 214–217.

    Article  CAS  Google Scholar 

  7. Zhu, Y. (2007) Immobilized cell fermentation for production of chemicals and fuels. pp. 373–396. In: Y. Shang-Tian (ed.). Bioprocessing for Value-Added Products from Renewable Resources, Elsevier, Amsterdam, Netherlands.

    Chapter  Google Scholar 

  8. Kourkoutas, Y., A. Bekatorou, I. M. Banat, R. Marchant, and A. A. Koutinas (2004) Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 21: 377–397.

    Article  CAS  Google Scholar 

  9. He, Q., and H. Chen (2013) Improved efficiency of butanol production by absorbed lignocellulose fermentation. J. Biosci. Bioeng. 115: 298–302.

    Article  CAS  Google Scholar 

  10. Rattanapan, A., S. Limtong, and M. Phisalaphong (2011) Ethanol production by repeated batch and continuous fermentations of blackstrap molasses using immobilized yeast cells on thin-shell silk cocoons. Appl. Energy 88: 4400–4404.

    Article  CAS  Google Scholar 

  11. Tsujimoto, K., H. Takagi, M. Takahashi, H. Yamada, and S. Nakamori (2001) Cryoprotective effect of the serine-rich repetitive sequence in silk protein sericin. J. Biochem. 129: 979–986.

    Article  CAS  Google Scholar 

  12. Aramwit, P., S. Kanokpanont, W. de-Eknamkul, K. Kamei, and T. Srichana (2009) The effect of sericin with variable amino-acid content from different silk strains on the production of collagen and nitric oxide. J. Biomater. Sci. Polym. Ed. 20: 1295–1306.

    Article  CAS  Google Scholar 

  13. Sutcharit, A., C. Satirapipathkul, C. Muangnapoh, V. Burapatana, and M. Phisalaphong (2010) Butanol production from sugarcane juice by Clostridium spp. in batch fermentation. KKU Eng. J. 37: 339–347.

    Google Scholar 

  14. Shaheen, R., M. Shirley, and D. T. Jones (2000) Comparative fermentation studies of industrial strains belonging to four species of solvent-producing clostridia. J. Mol. Microbiol. Biotechnol. 2: 115–124.

    CAS  Google Scholar 

  15. Yen, H. -W., R. -J. Li, and T. -W. Ma (2011) The development process for a continuous acetone–butanol–ethanol (ABE) fermentation by immobilized Clostridium acetobutylicum. J. Taiwan Inst. Chem. Eng. 42: 902–907.

    Article  CAS  Google Scholar 

  16. Huesemann, M. H., L. -J. Kuo, L. Urquhart, G. A. Gill, and G. Roesijadi (2004) Acetone-butanol fermentation of marine macroalgae. Bioresour. Technol. 108: 305–309.

    Article  Google Scholar 

  17. Ezeji, T. C., N. Qureshi, and H. P. Blaschek (2004) Butanol fermentation research: upstream and downstream manipulations. Chem. Rec. 4: 305–314.

    Article  CAS  Google Scholar 

  18. Yen, H. -W. and R. -J. Li (2011) The effects of dilution rate and glucose concentration on continuous acetone–butanol–ethanol fermentation by Clostridium acetobutylicum immobilized on bricks. J. Chem. Technol. Biotechnol. 86: 1399–1404.

    Article  CAS  Google Scholar 

  19. Li, L., H. Ai, S. Zhang, S. Li, Z. Liang, Z. -Q. Wu, S. -T. Yang, and J. -F. Wang (2013) Enhanced butanol production by coculture of Clostridium beijerinckii and Clostridium tyrobutyricum. Bioresour. Technol. 143: 397–404.

    Article  CAS  Google Scholar 

  20. Welsh, F. W., R. E. Williams, and I. A. Veliky (1987) Solid carriers for a Clostridium acetobutylicum that produces acetone and butanol. Enz. Microb. Technol. 9: 500–502.

    Article  CAS  Google Scholar 

  21. Wagner, A. O., P. Hohlbrugger, P. Lins, and P. Illmer (2012) Effects of different nitrogen sources on the biogas production–a lab-scale investigation. Microbiol. Res. 167: 630–636.

    Article  CAS  Google Scholar 

  22. Barker, H. A. (1981) Amino acid degradation by anaerobic bacteria. Annu. Rev. Biochem. 50: 23–40.

    Article  CAS  Google Scholar 

  23. Teshome, A., F. Vollrath, S. K. Raina, J. M. Kabaru, and J. Onyari (2012) Study on the microstructure of African wild silk cocoon shells and fibers. Int. J. Biol. Macromol. 50: 63–68.

    Article  CAS  Google Scholar 

  24. Zhang, Y. -Q. (2002) Applications of natural silk protein sericin in biomaterials. Biotechnol. Adv. 20: 91–100.

    Article  CAS  Google Scholar 

  25. Chen, Y., T. Zhou, D. Liu, A. Li, S. Xu, Q. Liu, B. Li, and H. Ying (2013) Production of butanol from glucose and xylose with immobilized cells of Clostridium acetobutylicum. Biotechnol. Bioproc. Eng. 18: 234–241.

    Article  CAS  Google Scholar 

  26. Maddox, I. S. (1989) The Acetone-butanol-ethanol fermentation: Recent progress in technology. Biotechnol. Genet. Eng. Rev. 7: 189–220.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muenduen Phisalaphong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kittithanesuan, N., Phisalaphong, M. Enhanced acetone-butanol production from sugarcane juice by immobilized Clostridium acetobutylicum (ATCC 824) on thin-shell silk cocoons. Biotechnol Bioproc E 20, 599–607 (2015). https://doi.org/10.1007/s12257-014-0709-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0709-x

Keywords

Navigation