Skip to main content
Log in

Intraperitoneal incubation of bladder acellular matrix grafts improves bladder smooth muscle regeneration via neovascularization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate whether intraperitoneal incubation improves the regenerative capacity of bladder acellular matrix grafts (BAMGs) in a rat model of bladder augmentation. After 2 weeks of incubation in the peritoneum of male rats, BAMG flaps with vascular pedicles were harvested for autologous bladder augmentation. As the control, BAMGs were directly used for bladder augmentation without intraperitoneal incubation. Histological analyses of the incubated BAMGs demonstrated extensive cell growth and vasculature in homogeneous collagen bundles. The cells were positive for vimentin and negative for α-smooth muscle actin and pan-cytokeratin AE1/AE3. Cystography revealed smoother contours of the augmented bladders in the incubated group at 4 and 12 weeks postoperatively. However, the bladder capacity was not significantly different between the two groups. In both groups, the entire urothelium regenerated well without obvious differences. At both time points, compared with the control group, increased numbers of smooth muscle cells (SMCs) and blood vessels were found in the incubated group. At 12 weeks, the SMCs in the incubated group were more similar to those in the native smooth muscle fiber bundles of the bladder. Taken together, our results demonstrated that BAMGs preincubated in the peritoneum promote the regeneration of bladder smooth muscle via neovascularization in a rat bladder augmentation model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kaefer, M., W. H. Hendren, S. B. Bauer, P. Goldenblatt, and C. A. Peters (1998) Reservoir calculi: A comparison of reservoirs constructed from stomach and other enteric segments. J. Urol. 160: 2187–2190.

    Article  CAS  Google Scholar 

  2. Jack, G. S., R. Zhang, M. Lee, Y. H. Xu, and B. M. Wu (2009) Urinary bladder smooth muscle engineered from adipose stem cells and a three dimensional synthetic composite. Biomaterials 30: 3259–3270.

    Article  CAS  Google Scholar 

  3. Zhu, W. D., Y. M. Xu, C. Feng, Q. A. Fu, and L. J. Song (2010) Bladder reconstruction with adipose-derived stem cell-seeded bladder acellular matrix grafts improve morphology composition. World J. Urol. 28: 493–498.

    Article  CAS  Google Scholar 

  4. Atala, A., S. B. Bauer, S. Soker, J. J. Yoo, and A. B. Retik (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367: 1241–1246.

    Article  Google Scholar 

  5. Caione, P., R. Boldrini, A. Salerno, and S. G. Nappo (2012) Bladder augmentation using acellular collagen biomatrix: A pilot experience in exstrophic patients. Pediatr. Surg. Int. 28: 421–428.

    Article  Google Scholar 

  6. Kim, B. S., A. Atala, and J. J. Yoo (2008) A collagen matrix derived from bladder can be used to engineer smooth muscle tissue. World J. Urol. 26: 307–314.

    Article  CAS  Google Scholar 

  7. Zhu, W. D., Y. M. Xu, C. Feng, Q. Fu, and L. J. Song (2011) Different bladder defects reconstructed with bladder acellular matrix grafts in a rabbit model. Urol, 50: 1420–1425.

    Article  Google Scholar 

  8. Akbal, C., S. D. Lee, S. C. Packer, M. M. Davis, and R. C. Rink (2006) Bladder augmentation with acellular dermal biomatrix in a diseased animal model. J. Urol. 176: 1706–1711.

    Article  Google Scholar 

  9. Brown, A. L., W. Farhat, P. A. Merguerian, G. J. Wilson, and A. E. Khoury (2002) 22 week assessment of bladder acellular matrix as a bladder augmentation material in a porcine model. Biomaterials 23: 2179–2190.

    Article  CAS  Google Scholar 

  10. Kajbafzadeh, A. M., A. Tourchi, A. A. Mousavian, L. Rouhi, and S. M. Tavangar (2014) Bladder muscular wall regeneration with autologous adipose mesenchymal stem cells on three-dimensional collagen-based tissue-engineered prepuce and biocompatible nanofibrillar scaffold. J. Pediatr. Urol. 10: 1051–1058.

    Article  Google Scholar 

  11. Coutu, D. L., W, Mahfouz, O, Loutochin, J, Galipeau, and J. Corcos (2014) Tissue engineering of rat bladder using marrowderived mesenchymal stem cells and bladder acellular matrix. PLoS One 9: e111966.

  12. Yokoyama, T., J. Huard, R. Pruchnic, N. Yoshimura, and Z. Qu (2001) Muscle-derived cell transplantation and differentiation into lower urinary tract smooth muscle. Urol. 57: 826–831.

    Article  CAS  Google Scholar 

  13. Joseph, D. B., J. G. Borer, R. E. De Filippo, S. J. Hodges, and G. A. McLorie (2014) Autologous cell seeded biodegradable scaffold for augmentation cystoplasty: Phase II study in children and adolescents with spina bifida. J. Urol. 191: 1389–1395.

    Article  CAS  Google Scholar 

  14. Loai, Y., H. Yeger, C. Coz, R. Antoon, and S. S. Islam (2010) Bladder tissue engineering: Tissue regeneration and neovascularization of HA-VEGF-incorporated bladder acellular constructs in mouse and porcine animal models. J. Biomed. Mater. Res. A. 94: 1205–1215.

    Google Scholar 

  15. Gu, G. L., Y. J. Zhu, S. J. Xia, J. Zhang, and J. T. Jiang (2010) Peritoneal cavity as bioreactor to grow autologous tubular urethral grafts in a rabbit model. World J. Urol. 28: 227–232.

    Article  Google Scholar 

  16. Fu, Q., C. L. Deng, W. Liu, and Y. L. Cao (2007) Urethral replacement using epidermal cell-seeded tubular acellular bladder collagen matrix. BJU International 99: 1162–1165.

    Article  Google Scholar 

  17. Seth, A., Y. G. Chung, E. S. Gil, D. Tu, and D. Franck (2013) The performance of silk scaffolds in a rat model of augmentation cystoplasty. Biomaterials 34: 4758–4765.

    Article  CAS  Google Scholar 

  18. Yuan, H., Y. Zhuang, J. Xiong, W. Zhi, and L. Liu (2013) Human umbilical mesenchymal stem cells-seeded bladder acellular matrix grafts for reconstruction of bladder defects in a canine model. PLoS One 8: e80959.

    Google Scholar 

  19. Zhen, H. N., X. Zhang, P. Z. Hu, T. T. Yang, and Z. Fei (2005) Survivin expression and its relation with proliferation, apoptosis, and angiogenesis in brain gliomas. Cancer 104: 2775–2783.

    Article  CAS  Google Scholar 

  20. Brown, A. L., T. T. Brook-Allred, J. E. Waddell, J. White, and J. A. Werkmeister (2005) Bladder acellular matrix as a substrate for studying in vitro bladder smooth muscle-urothelial cell interactions. Biomaterials 26: 529–543.

    Article  CAS  Google Scholar 

  21. Reddy, P. P., D. J. Barrieras, G. Wilson, D. J. Bagli, and G. A. McLorie (2000) Regeneration of functional bladder substitutes using large segment acellular matrix allografts in a porcine model. J. Urol. 164: 936–941.

    Article  CAS  Google Scholar 

  22. Probst, M., H. J. Piechota, R. Dahiya, and E. A. Tanagho (2000) Homologous bladder augmentation in dog with the bladder acellular matrix graft. BJU Int. 85: 362–371.

    Article  CAS  Google Scholar 

  23. Falke, G., J. Caffaratti, and A. Atala (2000) Tissue engineering of the bladder. World J. Urol. 18: 36–43.

    Article  CAS  Google Scholar 

  24. Song, L., L. Wang, P. K. Shah, A. Chaux, and B. G. Sharifi (2010) Bioengineered vascular graft grown in the mouse peritoneal cavity. J. Vasc. Surg. 52: 994–1002.

    Article  Google Scholar 

  25. Campbell, G. R., G. Turnbull, L. Xiang, M. Haines, and S. Armstrong (2008) The peritoneal cavity as a bioreactor for tissue engineering visceral organs: Bladder, uterus and vas deferens. J. Tissue Eng. Regen. Med. 2: 50–60.

    Article  CAS  Google Scholar 

  26. Zhang, J., G. L. Gu, G. H. Liu, J. T. Jiang, and S. J. Xia (2012) Ureteral reconstruction using autologous tubular grafts for the management of ureteral strictures and defects: An experimental study. Urol. Int. 88: 60–65.

    Article  Google Scholar 

  27. Laschke, M. W., Y. Harder, M. Amon, I. Martin, and J. Farhadi (2006) Angiogenesis in tissue engineering: Breathing life into constructed tissue substitutes. Tissue Eng. 12: 2093–2104.

    Article  CAS  Google Scholar 

  28. Le, S. J., M. Gongora, B. Zhang, S. Grimmond, and G. R. Campbell (2010) Gene expression profile of the fibrotic response in the peritoneal cavity. Differentiation 79: 232–243.

    Article  CAS  Google Scholar 

  29. Lu, M., G. Zhou, W. Liu, Z. Wang, and Y. Zhu (2010) Remodeling of buccal mucosa by bladder microenvironment. Urol. 75: e1517–1524.

    Google Scholar 

  30. Iijima, K., Y. Igawa, T. Imamura, T. Moriizumi, and T. Nikaido (2007) Transplantation of preserved human amniotic membrane for bladder augmentation in rats. Tissue Eng. 13: 513–524.

    Article  CAS  Google Scholar 

  31. Anderson, J. M., A. Rodriguez, and D. T. Chang (2008) Foreign body reaction to biomaterials. Semin. Immunol. 20: 86–100.

    Article  CAS  Google Scholar 

  32. Badylak, S. F. and T. W. Gilbert (2008) Immune response to biologic scaffold materials. Semin. Immunol. 20: 109–116.

    Article  CAS  Google Scholar 

  33. Piechota, H. J., C. A. Gleason, S. E. Dahms, R. Dahiya, and L. S. Nunes (1999) Bladder acellular matrix graft: In vivo functional properties of the regenerated rat bladder. Urol. Res. 27: 206–213.

    Article  CAS  Google Scholar 

  34. Gill, N. A. and A. Hameed (2011) Management of hypospadias cripples with two-staged Bracka’s technique. J. Plast. Reconstr. Aesthet. Surg. 64: 91–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Zhang or Mujun Lu.

Additional information

These authors contributed equally to this work and should be viewed as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Zhang, M., Xu, M. et al. Intraperitoneal incubation of bladder acellular matrix grafts improves bladder smooth muscle regeneration via neovascularization. Biotechnol Bioproc E 20, 523–531 (2015). https://doi.org/10.1007/s12257-014-0705-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0705-1

Keywords

Navigation