Skip to main content
Log in

Nitric-acid hydrolysis of Miscanthus giganteus to sugars fermented to bioethanol

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Miscanthus giganteus (M. giganteus) is a promising feedstock for the production of bioethanol or biochemicals. Using only dilute nitric acid, this work describes a two-step process for hydrolyzing hemicellulose and cellulose to fermentable sugars. Primary variables were temperature and reaction time. The solid-to-liquid mass ratio was 1:8. No enzymes were used. In the first step, M. giganteus was contacted with 0.5 wt.% nitric acid at temperatures between 120 and 160°C for 5 to 40 min. The second step used 0.5 or 0.75 wt.% nitric acid at temperatures between 180 and 210°C for less than 6 min. Under selected conditions, almost all hemicellulose and 58% cellulose were transferred to the liquid phase. Small amounts of degradation products were observed. The xylose solution obtained from the nitric-acid hydrolysis was fermented for 96 h and the glucose solution for 48 h to yield 0.41 g ethanol/g xylose and 0.46 g ethanol/g glucose. To characterize residual solids and the liquor from both steps, nuclear-magneticresonance (NMR) spectroscopy was performed for each fraction. The analytical data indicate that the liquid phase from Steps 1 and 2 contain little lignin or lignin derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carroll, A. and C. Somerville (2009) Cellulosic biofuels. Annu. Rev. Plant Biol. 60: 165–182.

    Article  CAS  Google Scholar 

  2. Heaton, E. A., F. G. Dohleman, A. F. Miguez, J. A. Juvik, V. Lozovaya, J. Widholm, O. A. Zabotina, G. F. McIsaac, M. B. David, T. B. Voigt, N. N. Boersma, and S. P. Long (2010) Miscanthus: A promising biomass crop. Adv. Bot. Res. 56: 75–137.

    Article  Google Scholar 

  3. McMillan, J.. D. (1994) Pretreatment of Lignocellulosic Biomass. pp. 292–324. Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Wahington DC, USA.

    Book  Google Scholar 

  4. Shill, K., S. Padmanabhan, Q. Xin, J. M. Prausnitz, D. S. Clark, and H. W. Blanch (2011) Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle. Biotechnol. Bioeng. 108: 511–520.

    Article  CAS  Google Scholar 

  5. Liu, Z., S. Padmanabhan, K. Cheng, P. Schwyter, M. Pauly, A. T. Bell, and J. M. Prausnitz (2013) Aqueous-ammonia delignification of miscanthus followed by enzymatic hydrolysis to sugars. Bioresour. Technol. 135: 23–29.

    Article  CAS  Google Scholar 

  6. Liu, Z., S. Padmanabhan, K. Cheng, H. Xie, A. Gokhale, W. Afzal, H. Na, M. Pauly, A. T. Bell, and J. M. Prausnitz (2014) Two-step delignification of miscanthus to enhance enzymatic hydrolysis: Aqueous ammonia followed by sodium hydroxide and oxidants. Energy Fuels. 28: 542–548.

    Article  CAS  Google Scholar 

  7. Yu, G., W. Afzal, F. Yang, S. Padmanabhan, Z. Liu, H. Xie, M. A. Shafy, A. T. Bell, and J. M. Prausnitz (2014) Pretreatment of miscanthus×giganteus using aqueous ammonia with hydrogen peroxide to increase enzymatic hydrolysis to sugars. J. Chem. Technol. Biotechnol. 89: 698–706.

    Article  CAS  Google Scholar 

  8. Mosier, N., C. Wyman, B. Dale, R. Elander, Y. Lee, M. Holtzapple, and M. Ladisch (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96: 673–686.

    Article  CAS  Google Scholar 

  9. Wyman, C. E. (1994) Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresour. Technol. 50: 3–15.

    Article  CAS  Google Scholar 

  10. Taherzadeh, M. J. and K. Karimi (2007) Acid-based hydrolysis processes for ethanol from lignocellulosic materials: A review. BioResources. 2: 472–499.

    CAS  Google Scholar 

  11. Lloyd, T. A. and C. E. Wyman (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96: 1967–1977.

    Article  CAS  Google Scholar 

  12. Moe, S. T., K. K. Janga, T. Hertzberg, M.-B. Hägg, K. Øyaas, and N. Dyrset (2012) Saccharification of lignocellulosic biomass for biofuel and biorefinery applications–A renaissance for the concentrated acid hydrolysis? Energy Procedia. 20: 50–58.

    Article  CAS  Google Scholar 

  13. Nguyen, Q., M. Tucker, F. Keller, and C. Eddy (2000) Two-stage dilute-acid pretreatment of softwoods. Appl. Biochem. Biotechnol. 84–86: 561–576.

    Article  Google Scholar 

  14. Sannigrahi, P., A. Ragauskas, and S. Miller (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Res. 1: 205–214.

    Article  Google Scholar 

  15. Söderström, J., L. Pilcher, M. Galbe, and G. Zacchi (2003) Twostep steam pretreatment of softwood by dilute H2SO4 impregnation for ethanol production. Biomass Bioenergy. 24: 475–486.

    Article  Google Scholar 

  16. Monavari, S., M. Galbe, and G. Zacchi (2009) The influence of solid/liquid separation techniques on the sugar yield in two-step dilute acid hydrolysis of softwood followed by enzymatic hydrolysis. Biotechnol. Biofuels. 2: 6.

    Article  Google Scholar 

  17. Nguyen, Q. A., M. P. Tucker, B. L. Boynton, F. A. Keller, and D. J. Schell (1998) Dilute acid pretreatment of softwoods- Scientific note. Appl. Biochem. Biotechnol. 70–2: 77–87.

    Article  Google Scholar 

  18. Rodríguez-Chong, A., J. Alberto Ramírez, G. Garrote, and M. Vázquez (2004) Hydrolysis of sugar cane bagasse using nitric acid: A kinetic assessment. J. Food Eng. 61: 143–152.

    Article  Google Scholar 

  19. Zhang, R., X. Lu, Y. Sun, X. Wang, and S. Zhang (2011) Modeling and optimization of dilute nitric acid hydrolysis on corn stover. J. Chem. Technol. Biotechnol. 86: 306–314.

    Article  CAS  Google Scholar 

  20. Brink, D. L. (1996) Hydrolyzing lignocellulose. US Patent 5,536,325.

    Google Scholar 

  21. Brink, D. L. (1993) Two stage hydrolysis or depolymerization of polysaccharide material as cellulose, hemicellulose and lignocellulose to monosaccharides using nitric acid. US Patent 5,221,357.

    Google Scholar 

  22. Brink, D. L. (1994) Method of treating biomass material. US Patent 5,366,558.

    Google Scholar 

  23. Sluiter, A., B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker (2008) Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory, Golden, CO, USA.

    Google Scholar 

  24. Cheng, K., H. Sorek, H. Zimmermann, D. E. Wemmer, and M. Pauly (2013) Solution-state 2D NMR spectroscopy of plant cell walls enabled by a Dimethylsulfoxide-d6/1-Ethyl-3-methylimidazolium acetate solvent. Anal. Chem. 85: 3213–3221.

    Article  CAS  Google Scholar 

  25. Kim, S. R., J. M. Skerker, W. Kang, A. Lesmana, N. Wei, A. P. Arkin, and Y. S. Jin (2013) Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose Fermentation in Saccharomyces cerevisiae. Plos One 8: 13.

    Google Scholar 

  26. Greer, D. R., T. P. Basso, A. B. Ibanez, S. Bauer, J. M. Skerker, A. E. Ozcam, D. Leon, C. Shin, A. P. Arkin, and N. P. Balsara (2014) Fermentation of hydrolysate detoxified by pervaporation through block copolymer membranes. Green Chem. 16: 4206–4213.

    Article  CAS  Google Scholar 

  27. Chum, H., D. Johnson, S. Black, and R. Overend (1990) Pretreatment-Catalyst effects and the combined severity parameter. Appl. Biochem. Biotechnol. 24–25: 1–14.

    Article  Google Scholar 

  28. Kim, H. and J. Ralph (2010) Solution-state 2D NMR of ballmilled plant cell wall gels in DMSO-d6/pyridine-d5. Org. Biomol. Chem. 8: 576–591.

    Article  CAS  Google Scholar 

  29. Jin, Y. S. and T. W. Jeffries (2004) Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab. Eng. 6: 229–238.

    Article  CAS  Google Scholar 

  30. Lewis Liu, Z., J. Moon, B. Andersh, P. Slininger, and S. Weber (2008) Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 81: 743–753.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Prausnitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Afzal, W., Cheng, K. et al. Nitric-acid hydrolysis of Miscanthus giganteus to sugars fermented to bioethanol. Biotechnol Bioproc E 20, 304–314 (2015). https://doi.org/10.1007/s12257-014-0658-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0658-4

Keywords

Navigation