Advertisement

Biotechnology and Bioprocess Engineering

, Volume 20, Issue 1, pp 44–50 | Cite as

An improved Tet-on system to tightly conditionally regulate reporter gene expression

  • Yanping Ren
  • Xiangping LiEmail author
  • Qingyou Liu
  • Yanfei Deng
  • Deshun ShiEmail author
Research Paper
  • 143 Downloads

Abstract

Reporter genes are often used as markers to track the integration and expression of target genes in animal genetic engineering. To avoid potential side effects from reporter genes, in this study an improved Tet-on system was developed to control reporter gene expression, and its effectiveness was explored in transgenic cells. First, the rtTA protein was fused with Tat and NLS proteins to obtain the prokaryotic expression vector pET32a-Tat-rtTA-NSL. A eukaryotic transgenic vector was constructed, p-HS4-BPA-TmA-HS4, in which the reporter (mCherry) and target (PRL) genes were promoted by TRE and BCN, respectively. After confirming the functionality of the transgenic vector, purified rtTA protein and Dox were added to induce expression of the mCherry gene. The optimal amount of purified rtTA protein, its influence on target gene expression, and the time of rtTA protein action were each investigated separately. The results showed that rtTA protein was expressed in transformed E. coli with IPTG induction. TRE could promote mCherry gene expression by co-transfecting the constructed transgenic vector and prtTA plasmid. When purified rtTA protein and Dox were added, red fluorescence was observed in Bcap-37 cells transfected with the p-HS4-BPA-TmA-HS4 vector, and the exogenous PRL gene was expressed regardless of mCherry gene expression. The optimal amount of rtTA protein was 16 μg/mL, and it needed about 6 h to promote mCherry gene expression in transfected cells. These results demonstrate that the expression of the mCherry reporter gene can be tightly and conditionally regulated by our Tet-on system.

Keywords

Tet-on conditional regulation reporter gene mCherry prokaryotic expression rtTA protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, H.-S., M.-S. Jan, C.-K. Chou, P.-H. Chen, and N.-J. Ke (1999) Is green fluorescent protein toxic to the living cells? Biochem. Biophysic. Res. Communicat. 260: 712–717.CrossRefGoogle Scholar
  2. 2.
    Zhang, F., N. R. Hackett, G. Lam, J. Cheng, R. Pergolizzi, L. Luo, S. V. Shmelkov, J. Edelberg, R. G. Crystal, and S. Rafii (2003) Green fluorescent protein selectively induces HSP70-mediated up-regulation of COX-2 expression in endothelial cells. Blood 102: 2115–2121.CrossRefGoogle Scholar
  3. 3.
    Baens, M., H. Noels, V., Broeckx, S. Hagens, S. Fevery, A. D. Billiau, H. Vankelecom, and P. Marynen (2006) The dark side of EGFP: Defective polyubiquitination. PloS one 1: e54.CrossRefGoogle Scholar
  4. 4.
    Schwenk, F., U. Baron, and K. Rajewsky (1995) A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23: 5080.CrossRefGoogle Scholar
  5. 5.
    Wakita, T., C. Taya, A. Katsume, J. Kato, H. Yonekawa, Y. Kanegae, I. Saito, Y. Hayashi, M. Koike, and M. Kohara (1998) Efficient conditional transgene expression in hepatitis C virus cDNA transgenic mice mediated by the Cre/loxP system. J. Biol. Chem. 273: 9001–9006.CrossRefGoogle Scholar
  6. 6.
    Novak, A., C. Guo, W. Yang, A. Nagy, and C. G. Lobe (2000) Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28: 147–155.CrossRefGoogle Scholar
  7. 7.
    Vieyra, D. S. and M. A. Goodell (2007) Pluripotentiality and conditional transgene regulation in human embryonic stem cells expressing insulated tetracyclineON Transactivator. Stem Cells 25: 2559–2566.CrossRefGoogle Scholar
  8. 8.
    Jin, L., S. Bo, C. Zhiwen, Z. Yijun, Z. Huchuan, W. Quanfang, and Y. Jin (2008) Transcription-coupled repair pathway in UVC-induced SupF gene mutation in Tet-on 293 cell line. J. Med. Colleges of PLA 23: 76–80.CrossRefGoogle Scholar
  9. 9.
    Berenjian, S. and G. Akusjärvi (2006) Binary AdEasy vector systems designed for Tet-ON or Tet-OFF regulated control of transgene expression. Virus Res. 115: 16–23.CrossRefGoogle Scholar
  10. 10.
    Fu, P.-H., D.-S. Shi, Y.-F. Deng, J.-F. Liu, and Q.-Y. Liu (2011) Prokaryotic expression of buffalo iPSCs transcription factor Sox2 and assist protein HA2-TAT. Chin. J. Veterinary Sci. 31: 1157–1161.Google Scholar
  11. 11.
    Frankel, A. D. and C. O. Pabo (1988) Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55: 1189–1193.CrossRefGoogle Scholar
  12. 12.
    Green, M. and P. M. Loewenstein (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus Tat Trans-activator Protein. Cell 55: 1179–1188.CrossRefGoogle Scholar
  13. 13.
    Schwarze, S. R., A. Ho, A. Vocero-Akbani, and S. F. Dowdy (1999) In vivo protein transduction: Delivery of a biologically active protein into the mouse. Sci. 285: 1569–1572.CrossRefGoogle Scholar
  14. 14.
    Snyder, E. L., B. R. Meade, C. C. Saenz, and S. F. Dowdy (2004) Treatment of terminal peritoneal carcinomatosis by a transducible p53-activating peptide. PLoS Biol. 2: e36.CrossRefGoogle Scholar
  15. 15.
    Jin, L. H., J. H. Bahn, W. S. Eum, H. Y. Kwon, S. H. Jang, K. H. Han, T.-C. Kang, M. H. Won, J. H. Kang, and S.-W. Cho, (2001) Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells. Free Rad. Biol. Med. 31: 1509–1519.CrossRefGoogle Scholar
  16. 16.
    Park, J., J. Ryu, L. H. Jin, J. H. Bahn, J. A. Kim, C. S. Yoon, D. W. Kim, K. H. Han, W. S. Eum, and H. Y. Kwon (2002) 9-polylysine protein transduction domain: Enhanced penetration efficiency of superoxide dismutase into mammalian cells and skin. Mol. Cells 13: 202–208.Google Scholar
  17. 17.
    Bosnali, M. and F. Edenhofer (2008) Generation of transducible versions of transcription factors Oct4 and Sox2. Biol. Chem. 389: 851–861.CrossRefGoogle Scholar
  18. 18.
    Stock, K., L. Nolden, F. Edenhofer, T. Quandel, and O. Brüstle (2010) Transcription factor-based modulation of neural stem cell differentiation using direct protein transduction. Cell. Mol. Life Sci. 67: 2439–2449.CrossRefGoogle Scholar
  19. 19.
    Vitale-Cross, L., P. Amornphimoltham, G. Fisher, A. A. Molinolo, and J. S. Gutkind, (2004) Conditional expression of K-ras in an epithelial compartment that includes the stem cells is sufficient to promote squamous cell carcinogenesis. Cancer Res. 64: 8804–8807.CrossRefGoogle Scholar
  20. 20.
    Myoung, J. and D. Ganem (2011) Generation of a doxycycline-inducible KSHV producer cell line of endothelial origin: Maintenance of tight latency with efficient reactivation upon induction. J. Virol. Methods 174: 12–21.CrossRefGoogle Scholar
  21. 21.
    Watanabe, T., D. Saito, K. Tanabe, R. Suetsugu, Y. Nakaya, S. Nakagawa, and Y. Takahashi, (2007) Tet-on inducible system combined with in ovo electroporation dissects multiple roles of genes in somitogenesis of chicken embryos. Develop. Biol. 305: 625–636.CrossRefGoogle Scholar
  22. 22.
    Kim, D., C.-H. Kim, J.-I. Moon, Y.-G. Chung, M.-Y. Chang, B.-S. Han, S. Ko, E. Yang, K. Y. Cha, and R. Lanza (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4: 472–476.CrossRefGoogle Scholar
  23. 23.
    Barka, T. and H. M. van der Noen, (1996) Retrovirus-mediated gene transfer into salivary glands in vivo. Human Gene Therapy 7: 613–618.CrossRefGoogle Scholar
  24. 24.
    Marston, F. D. (1986) The purification of eukaryotic polypeptides synthesized in Escherichia coli. Biochem. J. 240: 1–12.Google Scholar
  25. 25.
    Strandberg, L. and S.-O. Enfors (1991) Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl. Environ. Microbiol. 57: 1669–1674.Google Scholar
  26. 26.
    Wetzel, R., D. G. Kleid, R. Crea, H. L. Heyneker, D. G. Yansura, H. Tadaaki, A. Kraszewski, A. D. Riggs, I. Keiichi, and D. V. Goeddel, (1981) Expression in escherichia coli of a chemically synthesized gene for a “mini-c” analog of human proinsulin. Gene 16: 63–71.CrossRefGoogle Scholar
  27. 27.
    Goeddel, D. V., D. G. Kleid, F. Bolivar, H. L. Heyneker, D. G. Yansura, R. Crea, T. Hirose, A. Kraszewski, K. Itakura, and A. D. Riggs (1979) Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Nat. Acad. Sci. 76: 106–110.CrossRefGoogle Scholar
  28. 28.
    Rudolph, R. and H. Lilie (1996) In vitro folding of inclusion body proteins. The FASEB J. 10: 49–56.Google Scholar
  29. 29.
    De Bernardez Clark, E. (1998) Refolding of recombinant proteins. Curr. Opin. Biotechnol. 9: 157–163.CrossRefGoogle Scholar
  30. 30.
    Han, B., F. L. Hall, and M. E. Nimni (1997) Refolding of a recombinant collagen-targeted TGF-β2 fusion protein expressed in Escherichia coli. Protein Exp. Purif. 11: 169–178.CrossRefGoogle Scholar
  31. 31.
    Smith, V. R. and J. E. Walker (2003) Purification and folding of recombinant bovine oxoglutarate/malate carrier by immobilized metal-ion affinity chromatography. Protein Exp. Purif. 29: 209–216.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Subtropical Bioresource Conservation and Utilization at Guangxi UniversityNanning, GuangxiChina

Personalised recommendations