Skip to main content
Log in

Studies on recovery of lactoferrin from bovine colostrum whey using mercapto ethyl pyridine and phenyl propyl amine HyperCel™ mixed mode sorbents

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Lactoferrin is one of the important nutraceutical with several physiological and biological functions. Bovine colostrum contains higher concentrations of lactoferrin than in the milk. The present work describes the use of two mixed mode sorbents, mercapto ethyl pyridine (MEP HyperCel™) and phenyl propyl amine (PPA HyperCel™), for the recovery of lactoferrin from bovine colostrum whey. The dynamic binding capacity study showed that, in MEP the mode of interaction of lactoferrin is similar to IgG and had a more or less same binding capacity of ~20 mg/mL of sorbent. In PPA, the interaction of lactoferrin was hydrophobic and was influenced by the addition of salt. The binding capacity of lactoferrin with PPA in absence and presence of salt was found to be ~17 and ~18 mg/mL sorbent respectively. The binding buffers used for the chromatographic experiments were 0.05 M sodium phosphate buffer, pH 7.4, with or without sodium chloride (0.15 M). A decreasing step pH gradient of pH 6.0, 5.5 and 4.0 was performed for elution. Both lactoferrin and immunoglobulin were obtained with high homogeneity. The recovered lactoferrin was confirmed by immunoblot analysis. The chromatographic elution fractions obtained from MEP Hypercel did not exhibit lactoperoxidase activity. The highest recovery of lactoferrin (~91%) with 2.9 fold rise in purity was obtained when the MEP resin column was used with the binding buffer without sodium chloride. Thus, MEP HyperCel™ could be a potential alternative to existing systems for separation of lactoferrin from bovine colostrum whey.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pakkanen, R. and J. Aalto (1997) Growth factors and antimicrobial factors of bovine colostrum. Int. Dairy J. 7: 285–297.

    Article  CAS  Google Scholar 

  2. Moore, S. A., B. F. Anderson, C. R. Groom, M. Haridas, and E. N. Baker (1997) Three-dimensional structure of diferric bovine lactoferrin at 2.8 Å resolution. J. Mol. Biol. 274: 222–236.

    Article  CAS  Google Scholar 

  3. Guttner, Y., H. M. Windsor, C. H. Viiala, and B. J. Marshall (2003) Human recombinant lactoferrin is ineffective in the treatment of human Helicobacter pylori infection. Aliment. Pharmacol. Ther. 17: 125–129.

    Article  CAS  Google Scholar 

  4. Tanaka, K., M. Ikeda, and A. Nozaki (1999) Lactoferrin inhibits hepatitis C virus viremia in patients with chronic hepatitis C. A pilot study. Jpn. J. Cancer. Res. 90: 367–371.

    Article  CAS  Google Scholar 

  5. Di Mario, F., G. Aragona, N. Dal Bò, G. M. Cavestro, L. Cavallaro, V. Iori, G. Comparato, G. Leandro, A. Pilotto, and A. Franzè (2003) Use of bovine lactoferrin for Helicobacter pylori eradication. Digest. Liver. Dis. 35: 706–710.

    Article  Google Scholar 

  6. Yi, M., D. Y. Kaneko, and S. M. Yu (1997) Hepatitis C virus envelope proteins bind lactoferrin. J. Virol. 71: 5997–6002.

    CAS  Google Scholar 

  7. Furmanski, P., Z. P. Li, M. B. Fortuna, C. V. R. Swamy, and M. R. Das (1989) Multiple molecular forms of human lactoferrin. Identification of a class of lactoferrins that posses ribonuclease activity and lack iron-binding capacity. J. Exp. Med. 170: 415–429.

    Article  CAS  Google Scholar 

  8. Devi, A. S., M. R. Das, and M. W. Pandit (1994) Lactoferrin contains structural motifs of ribonuclease. Biochem. Biophys. Acta 1205: 275–281.

    CAS  Google Scholar 

  9. Tomita, N., H. Wakabayashi, K. Yamauchi, S. Teraguchi, and H. Hayasawa (2002) Bovine lactoferrin and lactoferricin derived from milk: production and applications. Biochem. Cell. Biol. 80: 109–112.

    Article  CAS  Google Scholar 

  10. Paul, K. Ng. and Y. Tomohiko (2010) Purification of lactoferrin using hydroxyapatite J. Chromatogr. B. 878: 976–980.

    Article  Google Scholar 

  11. Noppe, W., M. P. Fatima, Y. G. Igor, V. Karen, M. Bo, and D. Hans (2006) Immobilised peptide displaying phages as affinity ligands Purification of lactoferrin from defatted milk. J. Chromatogr. A. 1101: 79–85.

    Article  CAS  Google Scholar 

  12. Wolman, F. J., D. M. Gonzalez, M. Grasselli, and O. Cascone. (2007) One-step lactoferrin purification from bovine whey and colostrums by affinity membrane chromatography. J. Membr. Sci. 288: 132–138.

    Article  CAS  Google Scholar 

  13. Baieli, M. F., N. Urtasun, M. V. Miranda O. Cascone, and F. J. Wolman (2014) Bovine lactoferrin purification from whey using Yellow HE-4R as the chromatographic affinity ligand. J. Sep. Sci. 37: 484–487.

    Article  CAS  Google Scholar 

  14. Sulkowski, E. (1988) Immobilized metal ion affinity chromatography of proteins on IDA-Fe3+. Makromol. Chem. Macromol. Symp. 17: 335–348.

    Article  CAS  Google Scholar 

  15. Hutchens, T. W. and T. T. Yip (1991) Metal ligand-induced alterations in the surface structures of lactoferrin and transferring probed by interaction with immobilized Cu (II) ions. J. Chromatogr. 536: 1–15.

    Article  CAS  Google Scholar 

  16. Shiva Ranjini, S., B. Devla, A. P. Dhivya, and M. A. Vijayalakshmi (2010) Study of the mechanism of the interaction of antibody (IgG) on two mixed mode sorbents. J. Chromatogr. B. 878: 1031–1037.

    Article  Google Scholar 

  17. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  18. Laemli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  Google Scholar 

  19. Nesterenko, M. V., T. Michael, and S. J. Upton (1994) A simple modification of Blum’s silver stain method allows for 30 minute detection for proteins in polyacrylamide gels. J. Biochem. Biophys. Methods 28: 239–242.

    Article  CAS  Google Scholar 

  20. Trott, O. and A. J. Olson (2010) AutoDock Vina, improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading Comput. Chem. 31: 455–461.

    CAS  Google Scholar 

  21. Jie, C., T. Jen, Z. Yanyu W. Any, C. Greg, D. Mike, H. Elliot, E. N. Anrew, and L. Arthur (2010) The distinctive separation attributes of mixed-mode resins and their application in monoclonal antibody downstream purification process. J. Chromatogr. A. 1217: 216–224.

    Article  Google Scholar 

  22. Boschetti, E. (2002) Antibody separation by hydrophobic charge induction chromatography. Trends. Biotechnol. 20: 333–337.

    Article  CAS  Google Scholar 

  23. Wang, R. Z., D. Q. Lin, H. F. Tong, H. L. Lu, and S. J. Yao (2013) Evaluation of mixed-mode chromatographic resins for separating IgG from serum albumin containing feedstock. J. Chromatogr. B. 936: 33–41.

    Article  CAS  Google Scholar 

  24. Du, Q. Y., D. Q. Lin, Z. S Xiong, and S. J. Yao (2013) One-step purification of lactoferrin from crude sweet whey using cationexchange expanded bed adsorption. Ind. Eng. Chem. Res. 52: 2693–2699.

    Article  CAS  Google Scholar 

  25. Du, Q. Y., D. Q. Lin, Q. L. Zhang, and S. J. Yao (2014) An integrated expanded bed adsorption process for lactoferrin and immunoglobulin G purification from crude sweet whey J. Chromatogr. B 947–948: 201–207.

    Article  Google Scholar 

  26. Brochier, V. B., A. Schapman, P. Santambien, and L. Britsch (2008) Fast purification process optimization using mixed-mode chromatography sorbents in pre-packed mini-columns J. Chromatogr. A 1177: 226–233.

    Article  Google Scholar 

  27. Yoshida, S. and Y. Xiuyun (1991) Isolation of lactoperoxidase and lactoferrin from bovine milk acid whey by carboxymethyl cation exchange chromatography. J. Dairy Sci. 74: 1439–1444.

    Article  CAS  Google Scholar 

  28. Santos, M. J., A. José Teixeira, and L. R. Rodrigues, (2011) Fractionation and recovery of whey proteins by hydrophobic interaction Chromatography. J. Chromatogr. B. 879: 475–479.

    Article  CAS  Google Scholar 

  29. Elfstrand, L., H. Lindmark-Mansson, M. Paulsson, L. Nyberg, and B. Akesson (2002) Immunoglobulin, growth factors and growth hormone in bovine colostrums and the effect of processing. Int. Dairy. J. 12: 879–887.

    Article  CAS  Google Scholar 

  30. Korhonen, H., P. Mamila, and H. S. Gill (2000) Bovine milk antibodies for health. Br. J. Nutr. 84: 135–146.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Jayaprakash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravichandran, R., Padmanabhan, V., Vijayalakhsmi, M.A. et al. Studies on recovery of lactoferrin from bovine colostrum whey using mercapto ethyl pyridine and phenyl propyl amine HyperCel™ mixed mode sorbents. Biotechnol Bioproc E 20, 148–156 (2015). https://doi.org/10.1007/s12257-014-0408-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0408-7

Keywords

Navigation