Skip to main content
Log in

Growth-dependent surface characteristics of Hansenula Polymorpha: implications for expanded bed adsorption chromatography

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The cell surface characteristics of a methylotrophic wild-type strain of yeast, Hansenula polymorpha, was investigated at different growth stages (early log, late log, stationary and death) of the biomass under different conditions (low and high salt in intact and disrupted forms) using extended DLVO theory. Biomass was characterized by contact angle measurements as well as zeta potential determinations. These measurements were used to describe the hydrophobic, polar, and electrostatic behavior of the biomass in its growth stages. Consequently, interaction free energy vs. distance profiles of the biomass with anion-exchange and HIC adsorbents were conveniently generated. A strong interaction was calculated between cells and the adsorbents in the stationary and death phases of the biomass illustrated by the striking correlation between theoretical predictions and biomass deposition experiments. The physico-chemical properties of biomass in different growth phases have important implications for expanded bed adsorption chromatography, where unfavorable biomass-adsorbent interactions adversely affect process efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walsh, G. (2012) A review of new biologic drug approvals over the years, featuring highlights from 2010 and 2011. BioPharm. Int. 25: 34–38.

    Google Scholar 

  2. Reichert, J. and C. Paquette (2003) Therapeutic recombinant proteins: Trends in US approvals 1982 to 2002. Curr. Opin. Mol. Ther. 5: 139–147.

    CAS  Google Scholar 

  3. Anspach, F. B., D. Curbelo, R. Hartmann, G. Garke, and W. -D. Deckwer (1999) Expanded-bed chromatography in primary protein purification. J. Chromatogr. A. 865: 129–144.

    Article  CAS  Google Scholar 

  4. Wheelwright, S.M. (1991) Protein Purification: Design and Scale Up of Downstream Processing. Hanser Publishers.

    Google Scholar 

  5. Harrison, R. G., P. Todd, S. R. Rudge, and D. P. Petrides (2003) Bioseparations Science and Engineering. Oxford University Press, NY.

    Google Scholar 

  6. D’Souza, R. N., A. M. Azevedo, M. R. Aires-Barros, N. L. Krajnc, P. Kramberger, M. L. Carbajal, M. Grasselli, R. Meyer, and M. Fernández-Lahore (2013) Emerging technologies for the integration and intensification of downstream bioprocesses. Pharm. Bioproc. 1: 423–440.

    Article  Google Scholar 

  7. Chase, H. A. (1994) Purification of proteins by adsorption chromatography in expanded beds. Trends Biotechnol. 12: 296–303.

    Article  CAS  Google Scholar 

  8. Feuser, J., J. Walter, M. -R. Kula, and J. Thömmes (1999) Cell/adsorbent interactions in expanded bed adsorption of proteins. Bioseparation 8: 99–109.

    Article  CAS  Google Scholar 

  9. Barnfield Frej, A. -K., R. Hjorth, and Å. Hammarström (1994) Pilot scale recovery of recombinant annexin V from unclarified Escherichia coli homogenate using expanded bed adsorption. Biotechnol. Bioeng. 44: 922–929.

    Article  CAS  Google Scholar 

  10. Calado, C. R. C., J. M. S. Cabral, and L. P. Fonseca (2002) Effect of Saccharomyces cerevisiae fermentation conditions on expanded bed adsorption of heterologous cutinase. J. Chem. Technol. Biotechnol. 77: 1231–1237.

    Article  CAS  Google Scholar 

  11. Beck, J. T., B. Williamson, and B. Tipton (1999) Direct coupling of expanded bed adsorption with a downstream purification step. Bioseparation 8: 201–207.

    Article  CAS  Google Scholar 

  12. Blank, G. S., G. Zapata, R. Fahrner, M. Milton, C. Yedinak, H. Knudsen, and C. Schmelzer (2001) Expanded bed adsorption in the purification of monoclonal antibodies: A comparison of process alternatives. Bioseparation 10: 65–71.

    Article  CAS  Google Scholar 

  13. Timo May, K. P. (2011) Improving process economy with expanded-bed adsorption technology. Bioproc. Int. 9: 32–36.

    Google Scholar 

  14. Walter, J. K. and J. Feuser (2003) Novel approach and technology in expanded bed adsorption techniques for primary recovery of proteins at large technical scale. Proceedings of the Extended reports from the 4th International Conference on Expanded Bed Adsorption.

    Google Scholar 

  15. Lin, D. Q., H. M. Fernandez-Lahore, M. R. Kula, and J. Thommes (2001) Minimising biomass/adsorbent interactions in expanded bed adsorption processes: A methodological design approach. Bioseparation. 10: 7–19.

    Article  CAS  Google Scholar 

  16. Fernández-Lahore, H. M., R. Kleef, M. R. Kula, and J. Thömmes (1999) The influence of complex biological feedstock on the fluidization and bed stability in expanded bed adsorption. Biotechnol. Bioeng. 64: 484–496.

    Article  Google Scholar 

  17. Vennapusa, R., S. M. Hunegnaw, R. B. Cabrera, and M. Fernandez-Lahore (2008) Assessing adsorbent-biomass interactions during expanded bed adsorption onto ion exchangers utilizing surface energetics. J. Chromatogr. A. 1181: 9–20.

    Article  CAS  Google Scholar 

  18. Fernández-Lahore, H. M., S. Geilenkirchen, K. Boldt, A. Nagel, M. R. Kula, and J. Thömmes (2000) The influence of cell adsorbent interactions on protein adsorption in expanded beds. J. Chromatogr. A. 873: 195–208.

    Article  Google Scholar 

  19. Poulin, F., R. Jacquemart, G. de Crescenzo, M. Jolicoeur, and R. Legros (2008) A study of the interaction of HEK-293 cells with streamline chelating adsorbent in expanded bed operation. Biotechnol. Progr. 24: 279–282.

    Article  CAS  Google Scholar 

  20. Smith, M. P., M. A. Bulmer, R. Hjorth, and N. J. Titchener-Hooker (2002) Hydrophobic interaction ligand selection and scale-up of an expanded bed separation of an intracellular enzyme from Saccharomyces cerevisiae. J. Chromatogr. A. 968: 121–128.

    Article  CAS  Google Scholar 

  21. Skvarla, J. (1993) A physicochemical model of microbial adhesion. J. Chem. Soc. Faraday Tran. 89: 2913–2921.

    Article  CAS  Google Scholar 

  22. Kondo, A., and M. Ueda (2004) Yeast cell-surface display - applications of molecular display. Appl. Microbiol. Biot. 64: 28–40.

    Article  CAS  Google Scholar 

  23. Ravin, N. V., M. A. Eldarov, V. V. Kadnikov, A. V. Beletsky, J. Schneider, E. S. Mardanova, E. M. Smekalova, M. I. Zvereva, O. A. Dontsova, A. V. Mardanov, and K. G. Skryabin (2013) Genome sequence and analysis of methylotrophic yeast Hansenula polymorpha DL1. BMC Genomics. 14: 837.

    Article  Google Scholar 

  24. Ma, Y., M. Zhou, S. Walter, J. Liang, Z. Chen, and L. Wu (2014) Selective adhesion and controlled activity of yeast cells on honeycomb-patterned polymer films via a microemulsion approach. Chem. Commun. 50: 15882–15885.

    Article  CAS  Google Scholar 

  25. Kurec, M., and T. Branyik (2011) The role of physicochemical interactions and FLO genes expression in the immobilization of industrially important yeasts by adhesion. Colloids Surf., B. 84: 491–497.

    Article  CAS  Google Scholar 

  26. Bou Zeidan, M., G. Zara, C. Viti, F. Decorosi, I. Mannazzu, M. Budroni, L. Giovannetti, and S. Zara (2014) L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts. PloS one. 9: e112141.

  27. Vennapusa, R. R., C. Tari, R. Cabrera, and M. Fernandez-Lahore (2009) Surface energetics to assess biomass attachment onto hydrophobic interaction adsorbents in expanded beds. Biochem. Eng. J. 43: 16–26.

    Article  CAS  Google Scholar 

  28. Ottewill, R. H. and J. N. Shaw (1972) Electrophoretic studies on polystyrene latices. J. Electroanal. Chem. Interfacial Electrochem. 37: 133–142.

    Article  CAS  Google Scholar 

  29. Farahat, M. and T. Hirajima (2012) Hydrophilicity of Ferroplasma acidiphilum and its effect on the depression of pyrite. Miner. Eng. 36–38: 242–247.

    Article  Google Scholar 

  30. Lipke, P. N. and J. Kurjan (1992) Sexual agglutination in budding yeasts: Structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56: 180–194.

    CAS  Google Scholar 

  31. Tari, C., R. Vennapusa, R. B. Cabrera, and M. Fernández-Lahore (2008) Colloid deposition experiments as a diagnostic tool for biomass attachment onto bioproduct adsorbent surfaces. J. Chem. Technol. Biotechnol. 83: 183–191.

    Article  CAS  Google Scholar 

  32. Kucsera, J., K. Yarita, and K. Takeo (2000) Simple detection method for distinguishing dead and living yeast colonies. J. Microbiol. Methods. 41: 19–21.

    Article  CAS  Google Scholar 

  33. Sharma, P. K. and K. Hanumantha Rao (2002) Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry. Adv. Colloid. Interface Sci. 98: 341–463.

    Article  CAS  Google Scholar 

  34. Huang, A. Y. and J. C. Berg (2006) High-salt stabilization of Laponite clay particles. J. Colloid. Interface Sci. 296: 159–164.

    Article  CAS  Google Scholar 

  35. van Oss, C. J. (2006) Interfacial Forces in Aqueous Media. 2nd ed. Taylor & Francis, Boca Raton.

    Google Scholar 

  36. Vennapusa, R. R., M. Aasim, R. Cabrera, and M. Fernandez-Lahore (2009) Surface energetics to assess biomass attachment onto immobilized metal-ion chromatography adsorbents in expanded beds. Biotechnol. Bioproc. Eng. 14: 419–428.

    Article  CAS  Google Scholar 

  37. Vennapusa, R. R., O. Aguilar, J. M. B. Mintong, G. Helms, J. Fritz, and M. F. Lahore (2010) Biomass-adsorbent adhesion forces as an useful indicator of performance in expanded beds. Separ. Sci. Technol. 45: 2235–2244.

    Article  CAS  Google Scholar 

  38. Vennapusa, R. R., S. Binner, R. Cabrera, and M. Fernandez-Lahore (2008) Surface energetics to assess microbial adhesion onto fluidized chromatography adsorbents. Eng. Life Sci. 8: 530–539.

    Article  CAS  Google Scholar 

  39. Farahat, M., T. Hirajima, K. Sasaki, and K. Doi (2009) Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior. Colloids Surf. B. 74: 140–149.

    Article  CAS  Google Scholar 

  40. Lin, D. -Q., P. J. Brixius, J. J. Hubbuch, J. Thömmes, and M. -R. Kula (2003) Biomass/adsorbent electrostatic interactions in expanded bed adsorption: A zeta potential study. Biotechnol. Bioeng. 83: 149–157.

    Article  CAS  Google Scholar 

  41. Lin, D. -Q., L. -N. Zhong, and S. -J. Yao (2006) Zeta potential as a diagnostic tool to evaluate the biomass electrostatic adhesion during ion-exchange expanded bed application. Biotechnol. Bioeng. 95: 185–191.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Fernández-Lahore.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, N., Dsouza, R.N., Yelemane, V. et al. Growth-dependent surface characteristics of Hansenula Polymorpha: implications for expanded bed adsorption chromatography. Biotechnol Bioproc E 20, 576–584 (2015). https://doi.org/10.1007/s12257-014-0397-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0397-6

Keywords

Navigation