Skip to main content
Log in

Nitro-oleic acid decreases transcription of the angiotensin II type I receptor gene in aortic smooth muscle cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 2015

Abstract

Nitroalkene derivatives of nitro-oleic acid (OA-NO2) regulate pluripotent cell signaling in vivo under physiological and pathological conditions. Angiotensin II type 1 receptor (AT1R) plays an important role in the cardiovascular system. In this study, OA-NO2 reduced the AT1R mRNA level, specifically in primary smooth muscle cells, showing a 70% reduction in rat smooth muscle cells (RASMCs) and a 50% reduction in pig smooth muscle cells (PASMCs). These effects were not observed in CHO cells, which highly express AT1R. The AT1R mRNA decay rate was unchanged after OA-NO2 compared with OA treatment. Nitric oxide (NO) and peroxisome proliferator-activated receptor gamma (PPARγ) did not alter the reduced effects of OA-NO2 on the AT1R mRNA level in SMCs. However, Sp1-mediated activation of the AT1R promoter was reduced in response to OA-NO2 in RASMCs but not 293T cells. In addition, the nuclear factor-kappa B (NF-κB) pathway was involved in the OA-NO2-mediated downregulation of AT1R transcription in SMCs. Taken together, our results demonstrate that OA-NO2 specifically inhibits AT1R mRNA expression in primary smooth muscle cells via the NF-κB pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freeman, B. A., P. R. Baker, F. J. Schopfer, S. R. Woodcock, and A. Napolitano (2008) Nitro-fatty acid formation and signaling. J. Biol. Chem. 283: 15515–15519.

    Article  CAS  Google Scholar 

  2. Nadtochiy, S. M., P. R. S. Baker, B. A. Freeman, and P. S. Brookes (2009) Mitochondrial nitroalkene formation and mild uncoupling in ischaemic preconditioning: Implications for cardioprotection. Cardiovasc. Res. 82: 333–340.

    Article  CAS  Google Scholar 

  3. Schopfer, F. J. (2005) Fatty acid transduction of nitric oxide signaling. Free Rad. Biol. Med. 39: 8–8.

    Google Scholar 

  4. Cui, T., F. J. Schopfer, J. Zhang, K. Chen, and T. Ichikawa (2006) Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators. J. Biol. Chem. 281: 35686–35698.

    Article  CAS  Google Scholar 

  5. Wright, M. M., F. J. Schopfer, P. R. S. Baker, V. Vidyasagar, and P. Powell (2006) Fatty acid transduction of nitric oxide signaling: Nitrolinoleic acid potently activates endothelial heme oxygenase 1 expression. Proc. Nat. Acad. Sci. U.S.A. 103: 4299–4304.

    Article  CAS  Google Scholar 

  6. Villacorta, L., J. Zhang, M. T. Garcia-Barrio, X. L. Chen, and B. A. Freeman (2007) Nitro-linoleic acid inhibits vascular smooth muscle cell proliferation via the Keap1/Nrf2 signaling pathway. Am. J. Physiol. Heart Circ. Physiol. 293: 770–776.

    Article  Google Scholar 

  7. Zhang, J., L. Villacorta, L. Chang, Z. Fan, and M. Hamblin (2010) Nitro-oleic acid inhibits angiotensin II-induced hypertension. Circ. Res. 107: 540–548.

    Article  CAS  Google Scholar 

  8. Chang, L. V., J. Zhang, M. T. Garcia-Barrio, K. Yang, M. Hamblin, S. E. Whitesall, L. G. D’Alecy, and Y. E. Chen (2009) Vascular smooth muscle cell-selective peroxisome proliferatoractivated receptor-gamma deletion leads to hypotension. Circulation 119: 2161–2169.

    Article  CAS  Google Scholar 

  9. Rudolph, T. K., V. Rudolph, M. M. Edreira, M. P. Cole, and G. Bonacci (2010) Nitro-fatty acids reduce atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 30: 938–945.

    Article  CAS  Google Scholar 

  10. Rudolph, V., T. K. Rudolph, F. J. Schopfer, G. Bonacci, and S. R. Woodcock (2010) Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc. Res. 85: 155–166.

    Article  CAS  Google Scholar 

  11. Wright, M. M., J. Kim, T. D. Hock, N. Leitinger, and B. A. Freeman (2009) Human haem oxygenase-1 induction by nitrolinoleic acid is mediated by cAMP, AP-1 and E-box response element interactions. Biochem. J. 422: 353–361.

    Article  CAS  Google Scholar 

  12. Batthyany, C., F. J. Schopfer, P. R. S. Baker, R. Duran, and L. M. S. Baker (2006) Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J. Biol. Chem. 281: 20450–20463.

    Article  CAS  Google Scholar 

  13. Tang, X., Y. Guo, K. Nakamura, H. Huang, and M. Hamblin (2010) Nitroalkenes induce rat aortic smooth muscle cell apoptosis via activation of caspase-dependent pathways. Biochem. Biophys. Res. Commun. 397: 239–244.

    Article  CAS  Google Scholar 

  14. Elton, T. S. and M. M. Martin (2007) Angiotensin II type 1 receptor gene regulation: Transcriptional and posttranscriptional mechanisms. Hypertension 49: 953–961.

    Article  CAS  Google Scholar 

  15. Sugawara, A., K. Takeuchi, A. Uruno, Y. Ikeda, and S. Arima. (2001) Transcriptional suppression of type 1 angiotensin II receptor gene expression by peroxisome proliferator-activated receptor- gamma in vascular smooth muscle cells. Endocrinol. 142: 3125–3134.

    CAS  Google Scholar 

  16. Li, D., T. Saldeen, F. Romeo, and J. L. Mehta (2000) Oxidized LDL upregulates angiotensin II type 1 receptor expression in cultured human coronary artery endothelial cells: The potential role of transcription factor NF-kappaB. Circulat. 102: 1970–1976.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaochun Tang.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ouyang, H., Tian, Y. et al. Nitro-oleic acid decreases transcription of the angiotensin II type I receptor gene in aortic smooth muscle cells. Biotechnol Bioproc E 19, 740–746 (2014). https://doi.org/10.1007/s12257-014-0255-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0255-6

Keywords

Navigation