Skip to main content
Log in

Gadd45-induced cell cycle G2/M arrest for improved transient gene expression in Chinese hamster ovary cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Gadd45 is a p53-regulated protein and is involved in cell cycle arrest in the G2/M phase. In an effort to improve transient gene expression (TGE) in Chinese hamster ovary (CHO) cells, the effect of Gadd45-induced cell cycle arrest on TGE in CHO cells was investigated using the two different expression vectors encoding Fcfusion protein and recombinant antibody. To regulate the expression of Gadd45 in CHO cells, the CHO-TREx-gadd45 cell line was established using the T-REx system controlled by doxycycline. During the cultures for TGE, Gadd45 overexpression severely inhibited cell growth, but significantly enhanced TGE. Compared with the culture without Gadd45 overexpression, the TGE of Fc fusion protein and humanized antibody were increased by 111 and 93%, respectively. The enhanced TGE, despite the cell growth arrest induced by Gadd45 overexpression, was due to the significantly increased specific productivity, resulting from enhanced transfection efficiency, increased cell size, and active DNA demethylation. Taken together, the data obtained here demonstrate that Gadd45-induced cell cycle arrest in G2/M phase can significantly enhance TGE in CHO cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. Wurm, F. and A. Bernard (1999) Large-scale transient expression in mammalian cells for recombinant protein production. Curr. Opin. Biotechnol. 10: 156–159.

    Article  CAS  Google Scholar 

  2. Baldi, L., D. L. Hacker, M. Adam, and F. M. Wurm (2007) Recombinant protein production by large-scale transient gene expression in mammalian cells: State of the art and future perspectives. Biotechnol. Lett. 29: 677–684.

    Article  CAS  Google Scholar 

  3. Galbraith, D. J., A. S. Tait, A. J. Racher, J. R. Birch, and D. C. James (2006) Control of culture environment for improved polyethylenimine-mediated transient production of recombinant monoclonal antibodies by CHO cells. Biotechnol. Prog. 22: 753–762.

    Article  CAS  Google Scholar 

  4. Pham, P. L., A. Kamen, and Y. Durocher (2006) Large-scale transfection of mammalian cells for the fast production of recombinant protein. Mol. Biotechnol. 34: 225–237.

    Article  CAS  Google Scholar 

  5. Backliwal, G., M. Hildinger, S. Chenuet, S. Wulhfard, M. De Jesus, and F. M. Wurm (2008) Rational vector design and multipathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/L by transient transfection under serum-free conditions. Nucleic Acids Res. 36: e96.

    Article  Google Scholar 

  6. Geisse, S. and C. Fux (2009) Recombinant protein production by transient gene transfer into Mammalian cells. Methods Enzymol. 463: 223–238.

    Article  CAS  Google Scholar 

  7. Rosser, M. P., W. Xia, S. Hartsell, M. McCaman, Y. Zhu, S. Wang, S. Harvey, P. Bringmann, and R. R. Cobb (2005) Transient transfection of CHO-K1-S using serum-free medium in suspension: A rapid mammalian protein expression system. Protein Expr. Purif. 40: 237–243.

    Article  CAS  Google Scholar 

  8. Wulhfard, S., S. Tissot, S. Bouchet, J. Cevey, M. De Jesus, D. L. Hacker, and F. M. Wurm (2008) Mild hypothermia improves transient gene expression yields several fold in Chinese hamster ovary cells. Biotechnol. Prog. 24: 458–465.

    Article  CAS  Google Scholar 

  9. Zhang, X., I. F. Garcia, L. Baldi, D. L. Hacker, and F. M. Wurm (2010) Hyperosmolarity enhances transient recombinant protein yield in Chinese hamster ovary cells. Biotechnol. Lett. 32: 1587–1592.

    Article  CAS  Google Scholar 

  10. Wulhfard, S., L. Baldi, D. L. Hacker, and F. M. Wurm (2010) Valproic acid enhances recombinant mRNA and protein levels in transiently transfected Chinese hamster ovary cells. J. Biotechnol. 148: 128–132.

    Article  CAS  Google Scholar 

  11. Ye, J., V. Kober, M. Tellers, Z. Naji, P. Salmon, and J. F. Markusen (2009) High-level protein expression in scalable CHO transient transfection. Biotechnol. Bioeng. 103: 542–551.

    Article  CAS  Google Scholar 

  12. Tait, A. S., C. J. Brown, D. J. Galbraith, M. J. Hines, M. Hoare, J. R. Birch, and D. C. James (2004) Transient production of recombinant proteins by Chinese hamster ovary cells using polyethyleneimine/ DNA complexes in combination with microtubule disrupting anti-mitotic agents. Biotechnol. Bioeng. 88: 707–721.

    Article  CAS  Google Scholar 

  13. Carrier, F., I. Bae, M. L. Smith, D. M. Ayers, and A. J. Jr. Fornace (1996) Characterization of the GADD45 response to ionizing radiation in WI-L2-NS cells, a p53 mutant cell line. Mut. Res. 352: 79–86.

    Article  Google Scholar 

  14. Jin, S., T. Tong, W. Fan, F. Fan, M. J. Antinore, X. Zhu, L. Mazzacurati, X. Li, K. L. Petrik, B. Rajasekaran, M. Wu, and Q. Zhan (2002) GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene 21: 8696–8704.

    Article  CAS  Google Scholar 

  15. Carrier, F., M. L. Smith, I. Bae, K. E. Kilpatrick, T. J. Lansing, C. Y. Chen, M. Engelstein, S. H. Friend, W. D. Henner, T. M. Gilmer, M. B. Kastan, and A. J. Fornace Jr. (1994) Characterization of human Gadd45, a p53-regulated protein. J. Biol. Chem. 269: 32672–32677.

    CAS  Google Scholar 

  16. Niehrs, C. and A. Schafer (2012) Active DNA demethylation by Gadd45 and DNA repair. Trends in Cell Biol. 22: 220–227.

    Article  CAS  Google Scholar 

  17. Hwang, S. O., J. Y. Chung, and G. M. Lee (2003) Effect of doxycycline-regulated ERp57 expression on specific thrombopoietin productivity of recombinant CHO cells. Biotechnol. Prog. 19: 179–184.

    Article  CAS  Google Scholar 

  18. Jung, K., D. Lee, H. S. Lim, S. I. Lee, Y. J. Kim, G. M. Lee, S. C. Kim, and G. Y. Koh (2011) Double anti-angiogenic and antiinflammatory protein valpha targeting VEGF-A and TNF-á in retinopathy and Psoriasis. J. Biol. Chem. 286: 14410–14418.

    Article  CAS  Google Scholar 

  19. Kim, W. H., M. S. Kim, Y. G. Kim, and G. M. Lee (2012) Development of apoptosis-resistant CHO cell line expressing PyLT for the enhancement of transient antibody production. Proc. Biochem. 47: 2557–2561.

    Article  CAS  Google Scholar 

  20. Hwang, S. O. and G. M. Lee (2008) Nutrient deprivation induces autophagy as well as apoptosis in Chinese hamster ovary cell culture. Biotechnol. Bioeng. 99: 678–685.

    Article  CAS  Google Scholar 

  21. Kunaparaju, R., M. Liao, and N. A. Sunstrom (2005) Epi-CHO, an episomal expression system for recombinant protein production in CHO cells. Biotechnol. Bioeng. 91: 670–677.

    Article  CAS  Google Scholar 

  22. Kim, M., P. M. O’Callaghan, K. A. Droms, and D. C. James (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol. Bioeng. 108: 2434–2446.

    Article  CAS  Google Scholar 

  23. Zhan, Q. (2005) Gadd45a, a p53- and BRCA1-regulated stress protein, in cellular response to DNA damage. Mutat. Res. 569: 133–143.

    Article  CAS  Google Scholar 

  24. Jones, J., T. Nivitchanyong, C. Giblin, V. Ciccarone, D. Judd, S. Gorfien, S. S. Krag, and M. J. Betenbaugh (2005) Optimization of tetracycline-responsive recombinant protein production and effect on cell growth and ER stress in mammalian cells. Biotechnol. Bioeng. 91: 722–732.

    Article  CAS  Google Scholar 

  25. Kim, Y. G., J. Y. Kim, C. Mohan, and G. M. Lee (2009) Effect of Bcl-xL overexpression on apoptosis and autophagy in recombinant Chinese hamster ovary cells under nutrient-deprived condition. Biotechnol. Bioeng. 103: 757–766.

    Article  CAS  Google Scholar 

  26. Zhan, Q., M. J. Antinore, X. W. Wang, F. Carrier, M. L. Smith, C. C. Harris, and A. J. Fornance Jr. (1999) Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53-regulated protein Gadd45. Oncogene 18: 2892–2900.

    Article  CAS  Google Scholar 

  27. Taylor, W. R. and G. R. Stark (2001) Regulation of the G2/M transition by p53. Oncogene 20: 1803–1815.

    Article  CAS  Google Scholar 

  28. Yang, Y., Mariati, J. Chusainow, and M. G. S. Yap (2010) DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. J. Biotechnol. 147: 180–185.

    Article  CAS  Google Scholar 

  29. Hong, K., J. Sherley, and D. A. Lauffenburger (2001) Methylation of episomal plasmids as a barrier to transient gene expression via a synthetic delivery vector. Biomol. Eng. 18: 185–192.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyun Min Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, W.H., Kim, Y.J. & Lee, G.M. Gadd45-induced cell cycle G2/M arrest for improved transient gene expression in Chinese hamster ovary cells. Biotechnol Bioproc E 19, 386–393 (2014). https://doi.org/10.1007/s12257-014-0151-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0151-0

Keywords

Navigation