Skip to main content
Log in

A comparative proteomic analysis of parthenogenetic lines and amphigenetic lines of silkworm

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Parthenogenetic strains of silkworm serve as an effective system for sex-control in silkworms. To determine the molecular mechanism of silkworm parthenogenesis, protein profiles from newly hatched silkworm of a parthenogenetic lines with high pigmentation rate and hatching rate were compared with amphigenetic lines using proteomics approach, including by two-dimensional electrophoresis (2-DE), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF MS), and bioinformatics analysis. Several proteins were expressed differentially between the parthenogenetic and amphigenetic lines, and seven of nine interesting proteins were identified successfully using MALDI-TOF/TOF MS analysis. The identified proteins were muscular protein-20, odorant binding protein-LOC100301497, glutathione S-transferase delta, translationally controlled tumor protein homolog, cuticular protein RR-1 motif 19, beta-actin, actins, and muscle-type A1 actins. These proteins may be associated with the regulation of growth, development, and reproductive processes of silkworm parthenogenetic lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kirkendall, L. R. and B. Normark (2003) Parthenogenesis in encyclopaedia of insects. pp. 851–856. In: Vincent H. Resh and R. T. Carde (eds.). Academic Press.

  2. Strunnikov, V. A. (1995) Control over reproduction sex and heterosis of the silkworm. pp. 8–20. Moscow: Harwood Academic Publishers.

    Google Scholar 

  3. Klymenko, V. V. (2001) Parthenogenesis and cloning in the silkworm Bombyx mori L.: Problems and prospects. J. Insect. Biotechnol. Sericol. 70: 155–165.

    Google Scholar 

  4. Xu, A. Y., M. W. Li, P. J. Sun, Y. H. Zhang, and C. X. Hou (2004) Review on silkworm (Bombyx mori) sex control in China. Int. J. Indust. Entomol. 8: 123–127.

    Google Scholar 

  5. Tichomirov, A. A. (1886) Die künstliche parthenogenese bei insecten. Arch. Anat. Physiol. Abt. Suppl. Bd. 35–36.

    Google Scholar 

  6. Gangopadhyay, D., R. Singh, B. K. Kariappa, and S. B. Dandin (2005) Parthenogenesis in silkworm, Bombyx mori L.. Int. J. Indust. Entomol. 10: 1–10.

    Google Scholar 

  7. Astaurov, B. L. (1940) Artificial parthenogenesis in the silkworm (Bombyx mori L.). An experimental study, Moscow: USSR Academy Press Astaurov. 221–240.

    Google Scholar 

  8. Pan, Q. Z., Y. L. Chen, J. W. Chen, J. R. Lin, and Z. R. Huang (1994) Sex control of silkworm Bombyx mori by using sensitive character to incubating temperature and humidity. Chin. Sci. Bull. 39: 67–67.

    Google Scholar 

  9. Chen, J. E., B. L. Niu, Y. Q. Wang, Y. Liu, P. G. Liu, Z. Q. Meng, and B. X. Zhong (2012) Proteome analysis on lethal effect of l 2 in the sex-linked balanced lethal strains of silkworm, Bombyx mori. Biotechnol. Bioproc. Eng. 17: 298–308.

    Article  CAS  Google Scholar 

  10. He, K. R., X. R. Zhu, X. J. Liu, J.G. Xia, J. H. Huang, L. S. Yao, and Y. Q. Wang (2006) The breeding of male silkworm combination Qiuhua×Ping 30. Scientia. Agricultura. Sinica. 39: 1272–1276.

    Google Scholar 

  11. Wang, Y. Q., K. R. He, X. R. Zhu, X. J. Liu, X. L. He, and Y. T. Yao (2008) Studies on construction of female silkworm parthenogenetic clones and its application. Bull. Seri. 39: 8–10.

    Google Scholar 

  12. Wang, Y.Q., X. R. Zhu, K. R. He, Y. T. Yao, J. R. Cao, J. Q. Zhou, Y. F. Huang, X. J. Liu, X. L. He, and Z. Q. Meng (2010) The breeding and application of new male silkworm varieties by using female silkworm parthenogenetic clones. Sci. Seri. 36: 268–273.

    Google Scholar 

  13. Tonge, R., J. Shaw, B. Middleton, R. Rowlinson, S. Rayner, J. Young, F. Pognan, E. Hawkins, I. Currie, and M. Davison (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis Proteomics technology. Proteomics. 1: 377–396.

    Article  CAS  Google Scholar 

  14. Liu, P. G., Y. Q. Wang, J. E. Chen, X. L. He, and W. G. Li (2010) A comparative proteomic analysis on hemolymph of Bombyx mori parthenogenetic line and parent of amphigenetic line. Sci. Seri. 36: 243–249.

    CAS  Google Scholar 

  15. Zhou, Z. H., H. J. Yang, and B. X. Zhong (2008) From genome to proteome: Great progress in the domesticated silkworm (Bombyx mori L.). Acta. Biochim. Biophys. Sin. 40: 601–611.

    Article  CAS  Google Scholar 

  16. Li, X. H., X. F. Wu, W. F. Yue, J. M. Liu, G. L. Li, and Y. G. Miao (2006) Proteomic analysis of the silkworm (Bombyx mori L.) hemolymph during developmental stage. J. Proteome. Res. 5: 2809–2814.

    Article  CAS  Google Scholar 

  17. Frolova, S. L. (1948) Cytology of artifilcial parthenogensis in Bombxy mori L.II.cytology of maturation and development on activation with high temperautre. Histol. Embryol. 3: 162–185.

    Google Scholar 

  18. Vereiskaya, V. N. (1975) Meiosis and the beginning of cleavage in thermally activated ovicells of the silkworm. Byull. Mos. Obsch. Isp. Prirody. Otd. Biol. 80: 31–40.

    Google Scholar 

  19. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  20. Doherty, G. J. and H. T. McMahon (2008) Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annu. Rev. Biophys. 37: 65–95.

    Article  CAS  Google Scholar 

  21. Yi, K., J. R. Unruh, M. Deng, B. D. Slaughter, B. Rubinstein, and R. Li (2011) Dynamic maintenance of asymmetric meiotic spindle position through Arp2/3-complex-driven cytoplasmic streaming in mouse oocytes. Nat. Cell. Biol. 13: 1252–1258.

    Article  CAS  Google Scholar 

  22. Riparbelli, M. G., D. Tagu, J. Bonhomme, and G. Callami (2005) Aster self-organization at meiosis: A conserved mechanism in insect parthenogenesis? Dev. Biol. 278: 220–230.

    Article  CAS  Google Scholar 

  23. Yang, P., W. W. Zhou, Q. Zhang, J. A. Cheng, Z. R. Zhu, and M. Wang (2009) Differential gene expression profiling in the developed ovaries between the parthenogenetic and bisexual female rice water weevils, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae). Chin. Sci. Bull. 54: 3822–3829.

    Article  CAS  Google Scholar 

  24. Xu, X. Q., S. H. Song, Q. Wang, F. Qin, K. Liu, K. W. Zhang, S. N. Hu, and Y. L. Zhao (2009) Analysis and comparison of a set of expressed sequence tags of the parthenogenetic water flea Daphnia carinata. Mol. Genet. Genomics. 282: 197–203.

    Article  CAS  Google Scholar 

  25. Agnes, A.-S., P. Lasko, C. French, and M. L. Pardue (1989) Characterization of the gene for mp20: A drosophila muscle protein that is not found in asynchronous oscillatory flight muscle. J. Cell. Biol. 108: 521–531.

    Article  Google Scholar 

  26. Wnuk, W., J. A. Cox, and E. A. Stein (1982) Parvalbumins and other soluble high affinity calcium-binding proteins from muscle. pp. 243–278. Vol. 2. In: W. Y. Cheung (ed.). Calcium and Cell Function. Academic Press Inc., NY, USA.

    Chapter  Google Scholar 

  27. Cortes, T., D. Tagu, J. C. Simon, A. Moya, and D. Martinez-Torres (2008) Sex versus parthenogenesis: A transcriptomic approach of photoperiod response in the model aphid Acyrthosiphon pisum (Hemiptera: Aphididae). Gene. 408: 146–156.

    Article  CAS  Google Scholar 

  28. Baker, D. A., L. A. Meadows, J. Wang, J. A. T. Dow, and S. Russell (2007) Variable sexually dimorphic gene expression in laboratory strains of Drosophila melanogaster. BMC. Genomics.8: 453–462.

    Article  Google Scholar 

  29. Sawicki, R., S. P. Singh, A. K. Mondal, H. Benes, and P. Zimniak (2003) Cloning, expression and biochemical characterization of one epsilon-class (GST-3) and ten delta-class (GST-1) glutathione S-transferases from Drosophila melanogaster, and identification of additional nine members of the Epsilon class. J. Biochem. 370: 661–669.

    Article  CAS  Google Scholar 

  30. Vararattanavech, A., P. Prommeenate, and A. J. Ketterman (2006) The structural roles of a conserved small hydrophobic core in the active site and an ionic bridge in domain I of Delta class glutathione S-transferase. J. Biochem. 393: 89–95.

    Article  CAS  Google Scholar 

  31. Sheehan, D., G. Meade, V. M. Foley, and C. A. Dowd (2001) Structure, function and evolution of glutathione transferases: Implications for classification of non-mammalian members of an ancient enzyme superfamily. J. Biochem. 360: 1–16.

    Article  CAS  Google Scholar 

  32. Tarín, J. J., V. Gómez-Piquer, J. F. Pertusa, C. Hermenegildo, and A. Cano (2004) Association of female aging with decreased parthenogenetic activation, raised MPF, and MAPKs activities and reduced levels of glutathione S-transferases activity and thiols in mouse oocytes. Mol. Reprod. Dev. 69: 402–410.

    Article  Google Scholar 

  33. Wang, Y. M., D. G. Xia, Y. S. Zhan, X. J. Ren, Y. D. Wei, and G. Z. Zhang (2009) SSH cDNA library construction and sequence analysis from the autogenesis is early embryo in the silkworm, Bombyx mori. Acta. Sericologica. Sinica. 35: 476–485.

    CAS  Google Scholar 

  34. Acín, P., M. Carrascal, J. Abián, A. Guerrero, and C. Quero (2009) Expression of differential antennal proteins in males and females of an important crop pest, Sesamia nonagrioides. Insect. Biochem. Mol. Biol. 39: 11–19.

    Article  Google Scholar 

  35. Gong, D. P., H. J. Zhang, P. Zhao, Q. Y. Xia, and Z. H. Xiang (2009) The odorant binding protein gene family from the genome of silkworm, Bombyx mori. BMC. Genomcs. 10: 332.

    Article  Google Scholar 

  36. Bommer, U. A. and B. J. Thiele (2004) The translationally controlled tumor protein (TCTP). Int. J. Biochem. Cell. Bin. 36: 379–385.

    Article  CAS  Google Scholar 

  37. Brioudes, F., A. M. Thierry, P. Chambrier, B. Mollereau, and M. Bendahmane (2010) Translationally controlled tumor protein is a conserved mitotic growth integrator in animals and plants. Proc. Natl. Acad. Sci. 107: 16384–16389.

    Article  CAS  Google Scholar 

  38. Chen, S. H., P. S. Wu, C. H. Chou, Y. T. Yan, H. Liu, S. Y. Weng, and H. F. Yang-Yen (2007) A knockout mouse approach reveals that TCTP functions as an essential factor for cell proliferation and survival in a tissue-or cell type-specific manner. Mol. Biol. Cell. 18: 2525–2532.

    Article  CAS  Google Scholar 

  39. Rat’kin, E. V. (1976) Variability of the ova of mulberry silkworm with regard to capacity for thermal parthenogenesis and heat resistance. 4. Relationship between the capacity of oocytes from different females for thermal parthenogenesis and heat resistance of ova at the early stage of development and heat resistance of the muscles of these females. Ontogenez. 7: 70–75.

    Google Scholar 

  40. Wang, Y. Q. (2001) Studies on creating silkworm (Bombyx mori. L) asexual reproductive lines an its hereditary feature. Ph. D. Thesis. Zhejiang University, China.

    Google Scholar 

  41. Angelichio, M. L., J. A. Beck, H. Johansen, and M. Ivey-Hoyle (1991) Comparison of several promoter and polyadenylation signals for use in heterologous gene expression in cultured Drosophila cells. Nucleic Acids. Res. 19: 5037–5043.

    Article  CAS  Google Scholar 

  42. Andersen, S. O., P. Hojrup, and P. Roepstorff (1995) Insect cuticular proteins. Insect. Biochem. Mol. Biol. 25: 153–176.

    Article  CAS  Google Scholar 

  43. Liang, J. B., B. L. Liu, Z. G. Zhan, and N. J. He (2008) Bioinformation analysis of cuticular protein genes in the silkworm, Bombyx mori. Acta Sericologica Sinica 34: 405–416.

    CAS  Google Scholar 

  44. Futahashi, R., S. Okamoto, H. Kawasaki, Y. S. Zhong, M. Iwanage, K. Mita, and H. Fujiwara (2004) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 38: 1138–1146.

    Article  Google Scholar 

  45. Gallot, A., C. Rispe, N. Leterme, J. P. Gauthier, S. J.-Possamai, and D. Tagu (2010) Cuticular proteins and seasonal photoperiodism in aphids. Insect. Biochem. Mol. Biol. 43: 235–240.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangxiong Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Wang, Y., Du, X. et al. A comparative proteomic analysis of parthenogenetic lines and amphigenetic lines of silkworm. Biotechnol Bioproc E 19, 641–649 (2014). https://doi.org/10.1007/s12257-014-0099-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0099-0

Keywords

Navigation