Advertisement

Biotechnology and Bioprocess Engineering

, Volume 19, Issue 2, pp 363–368 | Cite as

Chemopreventive activity of Cnidii Rhizoma for breast cancer

  • Kyung-Soo Nam
  • Byung Geun Ha
  • Yun-Hee ShonEmail author
Research Paper
  • 77 Downloads

Abstract

Chemopreventive potential for human breast cancer was assessed in vitro with Cnidii Rhizoma extract. Cnidii Rhizoma inhibited cell proliferation in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) human breast carcinoma cell lines. Cytochrome P450 (CYP) 1A1-mediated ethoxyresorufin O-deethylase (EROD) activity was inhibited by Cnidii Rhizoma in a concentration-dependent manner. In addition, Cnidii Rhizoma extract caused inhibition of microsomal aromatase (estrogen synthase) activity. Ornithine decarboxylase (ODC) activity was reduced to 40.3% of the control after 6 h treatment with Cnidii Rhizoma (5 mg/mL) in MCF-7 breast cancer cells. Cnidii Rhizoma extract markedly reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated matrix metalloproteinase (MMP)-9 activity. These results suggest that Cnidii Rhizoma could be of therapeutic value in preventing human breast cancer.

Keywords

aromatase breast cancer Cnidii Rhizoma cytochrome P450 1A1 matrix metalloproteinase ornithine decarboxylase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jemal, A., T. Murray, E. Ward, A. Samuels, R. C. Tiwari, A. Ghafoor, E. J. Feuer, and M. J. Thun (2005) Cancer statistics. CA. Cancer J. Clin. 55: 10–30.CrossRefGoogle Scholar
  2. 2.
    Lee, K. S., J. S. Shin, and K. S. Nam (2011) Cancer chemopreventive effects of Starfish Polysaccharide in Human breast cancer Cells. Biotechnol. Bioproc. Eng. 16: 987–991.CrossRefGoogle Scholar
  3. 3.
    Wang, X., N. Zhang, Q. Huo, M. Sun, S. Lv, and Q. Yang (2013) Huaier aqueous extract suppresses human breast cancer cell proliferation through inhibition of estrogen receptor alpha signaling. Int. J. Oncol. 43: 321–328.Google Scholar
  4. 4.
    Hilakivi-Clarke, L., S. de Assis, and A. Warri (2013) Exposures to synthetic estrogens at different times during the life, and their effect on breast cancer risk. J. Mammary Gland Biol. Neoplasia. 18: 25–42.CrossRefGoogle Scholar
  5. 5.
    Renoir, J. M., V. Marsaud, and G. Lazennec (2012) Estrogen receptor signaling as a target for novel breast cancer therapeutics. Biochem. Pharmacol. 85: 449–465.CrossRefGoogle Scholar
  6. 6.
    Zhao, Y. N., W. Zhang, Y. C. Chen, F. Fang, and X. Q. Liu (2012) Relative imbalances in the expression of catechol-O-methyltransferase and cytochrome P450 in breast cancer tissue and their association with breast carcinoma. Maturitas. 72: 139–145.CrossRefGoogle Scholar
  7. 7.
    Takemura, H., H. Uchiyama, T. Ohura, H. Sakakibara, R. Kuruto, T. Amagai, and K. Shimoi (2009) A methoxyflavonoid, chrysoeriol, selectively inhibits the formation of a carcinogenic estrogen metabolite in MCF-7 breast cancer cells. J. Steroid Biochem. Mol. Biol. 118: 70–76.CrossRefGoogle Scholar
  8. 8.
    Czajka-Oraniec, I. and E. R. Simpson (2010) Aromatase research and its clinical significance. Endokrynol. Pol. 61: 126–134.Google Scholar
  9. 9.
    Sasano, H., Y. Miki, R. Shibuya, and T. Suzuki (2010) Aromatase and in situ estrogen production in DCIS (ductal carcinoma in situ) of human breast. J. Steroid Biochem. Mol. Biol. 118: 242–245.CrossRefGoogle Scholar
  10. 10.
    Perez-Leal, O. and S. Merali (2012) Regulation of polyamine metabolism by translational control. Amino Acids. 42: 611–617.CrossRefGoogle Scholar
  11. 11.
    Canizares, F., J. Salinas, M. de las Heras, J. Diaz, I. Tovar, P. Martinez, and R. Penafiel (1999) Prognostic value of ornithine decarboxylase and polyamines in human breast cancer: Correlation with clinicopathologic parameters. Clin. Cancer Res. 5: 2035–2041.Google Scholar
  12. 12.
    Zaletok, S., N. Alexandrova, N. Berdynskykh, N. Ignatenko, S. Gogol, O. Orlovsky, N. Tregubova, E. Gerner, and V. Chekhun (2004) Role of polyamines in the function of nuclear transcription factor NF-kappaB in breast cancer cells. Exp. Oncol. 26: 221–225.Google Scholar
  13. 13.
    Robert, J. (2013) Biology of cancer metastasis. Bull. Cancer. 100: 333–342.Google Scholar
  14. 14.
    Lee, K. S., J. S. Shin, and K. S. Nam (2012) Inhibitory effect of starfish polysaccharide on metastasis in HT-29 human colorectal adenocarcinoma. Biotechnol. Bioproc. Eng. 17: 764–769.CrossRefGoogle Scholar
  15. 15.
    Hadler-Olsen, E., J. O. Winberg, and L. Uhlin-Hansen (2013) Matrix metalloproteinases in cancer: Their value as diagnostic and prognostic markers and therapeutic targets. Tumour Biol. 34: 2041–2051.CrossRefGoogle Scholar
  16. 16.
    Chimal-Ramirez, G. K., N. A. Espinoza-Sanchez, D. Utrera-Barillas, L. Benitez-Bribiesca, J. R. Velazquez, L. A. Arriaga-Pizano, A. Monroy-Garcia, E. Reyes-Maldonado, M. L. Dominguez- Lopez, P. Pina-Sanchez, and E. M. Fuentes-Panana (2013) MMP1, MMP9, and COX2 expressions in promonocytes are induced by breast cancer cells and correlate with collagen degradation, transformation-like morphological changes in MCF-10A acini, and tumor aggressiveness. Biomed. Res. Int. 2013: 279505.CrossRefGoogle Scholar
  17. 17.
    Tahara, E., T. Satoh, K. Toriizuka, H. Nagai, S. Nunome, Y. Shimada, T. Itoh, K. Terasawa, and I. Saiki (1999) Effect of shimotsu-to (a kampo medicine, Si-Wu-Tang) and its constituents on triphasic skin reaction in passively sensitized mice. J. Ethnopharmacol. 68: 219–228.CrossRefGoogle Scholar
  18. 18.
    Haranaka, K., N. Satomi, A. Sakurai, R. Haranaka, N. Okada, and M. Kobayashi (1985) Antitumor activities and tumor necrosis factor producibility of traditional Chinese medicines and crude drugs. Cancer Immunol. Immunother. 20: 1–5.CrossRefGoogle Scholar
  19. 19.
    Onishi, Y., T. Yamaura, K. Tauchi, T. Sakamoto, K. Tsukada, S. Nunome, Y. Komatsu, and I. Saiki (1998) Expression of the antimetastatic effect induced by Juzen-taiho-to is based on the content of Shimotsu-to constituents. Biol. Pharm. Bull. 21: 761–765.CrossRefGoogle Scholar
  20. 20.
    Kwak, D. H., J. K. Kim, J. Y. Kim, H. Y. Jeong, K. S. Keum, S. H. Han, Y. I. Rho, W. H. Woo, K. Y. Jung, B. K. Choi, and Y. K. Choo (2002) Anti-angiogenic activities of Cnidium officinale Makino and Tabanus bovinus. J. Ethnopharmacol. 81: 373–379.CrossRefGoogle Scholar
  21. 21.
    Shon, Y. H. and K. S. Nam (2004) Inhibition of cytochrome P450 isozymes and ornithine decarboxylase activities by polysaccharides from soybeans fermented with Phellinus igniarius or Agrocybe cylindracea. Biotechnol. Lett. 26: 159–163.CrossRefGoogle Scholar
  22. 22.
    Thompson, E. A. Jr. and P. K. Siiteri (1974) Utilization of oxygen and reduced nicotinamide adenine dinucleotide phosphate by human placental microsomes during aromatization of androstenedione. J. Biol. Chem. 249: 5364–5372.Google Scholar
  23. 23.
    Shon, Y. H. and K. S. Nam (2003) Inhibition of polyamine biosynthesis in Acanthamoeba castellanii and 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase activity by chitosanoligosaccharide. Biotechnol. Lett. 25: 701–704.CrossRefGoogle Scholar
  24. 24.
    Liotta, L. A. and W. G. Stetler-Stevenson (1990) Metalloproteinases and cancer invasion. Semin. Cancer Biol. 1: 99–106.Google Scholar
  25. 25.
    Shon, Y. H. and K. S. Nam (2005) Induction of phase II enzymes and inhibition of cytochrome P450 isozymes by chitosanoligosaccharide. J. Microbiol. Biotechnol. 15: 183–187.Google Scholar
  26. 26.
    Yuspa, S. H. and M. C. Poirier (1988) Chemical carcinogenesis: from animal models to molecular models in one decade. Adv. Cancer Res. 50: 25–70.CrossRefGoogle Scholar
  27. 27.
    Dannan, G. A., D. J. Porubek, S. D. Nelson, D. J. Waxman, and F. P. Guengerich (1986) 17 beta-estradiol 2- and 4-hydroxylation catalyzed by rat hepatic cytochrome P450: Roles of individual forms, inductive effects, developmental patterns, and alterations by gonadectomy and hormone replacement. Endocrinol. 118: 1952–1960.CrossRefGoogle Scholar
  28. 28.
    Yue, W., J. D. Yager, J. P. Wang, E. R. Jupe, and R. J. Santen (2013) Estrogen receptor-dependent and independent mechanisms of breast cancer carcinogenesis. Steroid. 78: 161–170.CrossRefGoogle Scholar
  29. 29.
    Liang, J. and Y. Shang (2013) Estrogen and cancer. Annu. Rev. Physiol. 75: 225–240.CrossRefGoogle Scholar
  30. 30.
    Molzberger, A. F., S. T. Soukup, S. E. Kulling, and P. Diel (2013) Proliferative and estrogenic sensitivity of the mammary gland are modulated by isoflavones during distinct periods of adolescence. Arch. Toxicol. 87: 1129–1140.CrossRefGoogle Scholar
  31. 31.
    Gluck, S., G. von Minckwitz, and M. Untch (2013) Aromatase inhibitors in the treatment of elderly women with metastatic breast cancer. Breast 22: 142–149.CrossRefGoogle Scholar
  32. 32.
    Thomas, T. (1989) Structural specificity of polyamines in facilitating the high affinity binding of estrogen receptor to specific DNA sequences. FASEB J. 3: A1192.Google Scholar
  33. 33.
    Thomas, T. and T. J. Thomas (1994) Regulation of cyclin B1 by estradiol and polyamines in MCF-7 breast cancer cells. Cancer Res. 54: 1077–1084.Google Scholar
  34. 34.
    Glikman, P. L., A. Manni, M. Bartholomew, and L. Demers (1990) Polyamine involvement in basal and estradiol-stimulated insulin-like growth factor I secretion and action in breast cancer cells in culture. J. Steroid Biochem. Mol. Biol. 37: 1–10.CrossRefGoogle Scholar
  35. 35.
    Zhu, Q., L. Jin, R. A. Casero, N. E. Davidson, and Y. Huang (2012) Role of ornithine decarboxylase in regulation of estrogen receptor alpha expression and growth in human breast cancer cells. Breast Cancer Res. Treat. 136: 57–66.CrossRefGoogle Scholar
  36. 36.
    Wang, Y. C. and U. Bachrach (2002) The specific anti-cancer activity of green tea (−)-epigallocatechin-3-gallate (EGCG). Amino Acids 22: 131–143.CrossRefGoogle Scholar
  37. 37.
    Khoi, P. N., J. S. Park, J. H. Kim, Y. Xia, N. H. Kim, K. K. Kim, and Y. D. Jung (2013) (−)-Epigallocatechin-3-gallate blocks nicotine-induced matrix metalloproteinase-9 expression and invasiveness via suppression of NF-kappaB and AP-1 in endothelial cells. Int. J. Oncol. 43: 868–876.Google Scholar
  38. 38.
    Chaudhary, A. K., S. Pandya, K. Ghosh, and A. Nadkarni (2013) Matrix metalloproteinase and its drug targets therapy in solid and hematological malignancies: An overview. Mutat. Res. 753: 7–23.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pharmacology, College of MedicineDongguk UniversityGyeongjuKorea
  2. 2.Bio-Medical Research InstituteKyungpook National University HospitalDaeguKorea

Personalised recommendations