Biotechnology and Bioprocess Engineering

, Volume 19, Issue 4, pp 586–591 | Cite as

First enzymatic galactosylation of acyclic nucleoside drugs by β-galactosidase: Synthesis of water-soluble β-D-galactosidic prodrugs

  • Li-Qiang Yan
  • Ning Li
  • Min-Hua Zong
Research Paper


Acyclic nucleoside analogs constitute an important group of antiviral agents. However, these nucleoside drugs suffer from poor water solubility and low oral bioavailability in the clinic use. In the present work, the enzymatic synthesis of the water-soluble galactosidic prodrugs of acyclic nucleosides by using bovine liver β-galactosidase was described. In the enzymatic transgalactosylation between acyclovir (ACV) and o-nitrophenyl β-galactopyranoside (oNPGal), the optimum enzyme dosage, buffer pH, temperature and molar ratio of ACV to oNPGal were 0.225 U/mL, 7.0, 40°C and 2.5, respectively, under which the initial reaction rate and the yield reached 0.40 mM/h and 29%, respectively. In addition, this enzyme could accept ganciclovir (GCV) and penciclovir (PCV) as substrates, affording the corresponding 4’-β-galactosylated derivatives with the yields of 26% and 71%, respectively.


acyclic nucleosides enzyme substrate recognition β-galactosidase glycosylation prodrugs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Freeman, S. and J. M. Gardiner (1996) Acyclic nucleosides as antiviral compounds. Mol. Biotechnol. 5: 125–137.CrossRefGoogle Scholar
  2. 2.
    De Clercq, E. (2004) Antiviral drugs in current clinical use. J. Clin. Virol. 30: 115–133.CrossRefGoogle Scholar
  3. 3.
    De Clercq, E. and H. J. Field (2006) Antiviral prodrugs — the development of successful prodrug strategies for antiviral chemotherapy. Br. J. Pharmacol. 147: 1–11.CrossRefGoogle Scholar
  4. 4.
    Rautio, J., H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, and J. Savolainen (2008) Prodrugs: Design and clinical applications. Nat. Rev. Drug Discovery 7: 255–270.CrossRefGoogle Scholar
  5. 5.
    Santos, C. R., R. Capela, C. S. G. P. Pereira, E. Valente, B. Luis Gouveia, C. Pannecouque, E. D. Clercq, R. Moreira, and P. Gomes (2009) Structure-activity relationships for dipeptide prodrugs of acyclovir: Implications for prodrug design. Eur. J. Med. Chem. 44: 2339–2346.CrossRefGoogle Scholar
  6. 6.
    Colla, L., E. D. Clercq, R. Busson, and H. Vanderhaeghe (1983) Synthesis and antiviral activity of water-soluble esters of acyclovir [9-[(2-hydroxyethoxy )methyl]guanine]. J. Med. Chem. 26: 602–604.CrossRefGoogle Scholar
  7. 7.
    Patel, K., S. Trivedi, S. Luo, Xiaodong Zhu, D. Pal, E. R. Kern, and A. K. Mitra (2005) Synthesis, physicochemical properties and antiviral activities of ester prodrugs of ganciclovir. Int. J. Pharm. 305: 75–89.CrossRefGoogle Scholar
  8. 8.
    Curran, M. and S. Noble (2001) Valganciclovir. Drugs. 61: 1145–1150.CrossRefGoogle Scholar
  9. 9.
    Wu, C. Z., J. H. Jang, M. Woo, J. S. Ahn, J. S. Kim, and Y. S. Hong (2012) Enzymatic glycosylation of non-benzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl. Environ. Microbiol. 78: 7680–7686.CrossRefGoogle Scholar
  10. 10.
    Abraham, R., N. Aman, R. von Borstel, M. Darsley, B. Kamireddy, J. Kenten, G. Morris, and R. Titmas (1994) Conjugates of COL-1 monoclonal antibody and β-D-galactosidase can specifically kill tumor cells by generation of 5-fluorouridine from the prodrug β-D-galactosyl-5-fluorouridine. Cell Biochem. Biophys. 24: 127–133.Google Scholar
  11. 11.
    Watanabe, K. A., A. Matsuda, M. J. Halat, D. H. Hollenberg, J. S. Nisselbaum, and J. J. Fox (1981) Nucleosides. 114. 5′-O-Glucuronides of 5-fluorouridine and 5-fluorocytidine. Masked precursors of anticancer nucleosides. J. Med. Chem. 24: 893–897.CrossRefGoogle Scholar
  12. 12.
    Li, N., T. J. Smith, and M. H. Zong (2010) Biocatalytic transformation of nucleoside derivatives. Biotechnol. Adv. 28: 348–366.CrossRefGoogle Scholar
  13. 13.
    Binder, W. H., H. Kahlig, and W. Schmid (1995) Galactosylation by use of β-galactosidase: Enzymatic syntheses of disaccharide nucleosides. Tetrahedron: Asymm. 6: 1703–1710.CrossRefGoogle Scholar
  14. 14.
    Andreotti, G., A. Trincone, and A. Giordano (2007) Convenient synthesis of β-galactosyl nucleosides using the marine β-galactosidase from Aplysia fasciata. J. Mol. Catal. B: Enzym. 47: 28–32.CrossRefGoogle Scholar
  15. 15.
    Blazek, J., P. Jansa, O. Baszczynski, M. M. Kaiser, M. Otmar, M. Krecmerova, M. Drancinsky, A. Holy, and B. Kralova (2012) An enzymatic glycosylation of nucleoside analogues using β-galactosidase from Escherichia coli. Bioorg. Med. Chem. 20: 3111–3118.CrossRefGoogle Scholar
  16. 16.
    Ye, M., L. Q. Yan, N. Li, and M. H. Zong (2012) Facile and regioselective enzymatic 5′-galactosylation of pyrimidine 2′-deoxy-nucleosides catalyzed by β-glycosidase from bovine liver. J. Mol. Catal. B: Enzym. 79: 35–40.CrossRefGoogle Scholar
  17. 17.
    Yan, L. Q., N. Li, and M. H. Zong (2012) First and facile enzymatic synthesis of β-fucosyl-containing disaccharide nucleosides through β-galactosidase-catalyzed regioselective glycosylation. J. Biotechnol. 164: 371–375.CrossRefGoogle Scholar
  18. 18.
    Ye, M., C. Y. Yu, N. Li, and M. H. Zong (2011) Highly regioselective glucosylation of 2′-deoxynucleosides by using the crude β-glycosidase from bovine liver. J. Biotechnol. 155: 203–208.CrossRefGoogle Scholar
  19. 19.
    National Institute of Advanced Industrial Science and Technology (AIST), Japan. Spectral database for organic compounds, SDBS. Scholar
  20. 20.
    Lichtenthaler, F. W., W. Eberhard, and S. Braun (1981) Nucleosides, 45.-Assignment of glycosylation sites in O-hexopyranosylribonucleosides by 13C NMR. Tetrahedron Lett. 22: 4401–4404.CrossRefGoogle Scholar
  21. 21.
    Chen, L., N. Li, and M. H. Zong (2012) A Glucose-tolerant β-glucosidase from Prunus domestica seeds: purification and characterization. Proc. Biochem. 47: 127–132.CrossRefGoogle Scholar
  22. 22.
    Zeng, Q. M., N. Li, and M. H. Zong (2010) Highly regioselective galactosylation of floxuridine catalyzed by β-galactosidase from bovine liver. Biotechnol. Lett. 32: 1251–1254.CrossRefGoogle Scholar
  23. 23.
    Isobe, K., M. Yamashita, S. Chiba, N. Takahashi, and T. Koyama (2013) Characterization of new β-galactosidase from acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1. J. Biosci. Bioeng. 116: 293–297.CrossRefGoogle Scholar
  24. 24.
    van Rantwijk, F., M. W. V. Oosterom, and R. A. Sheldon (1999) Glycosidase-catalysed synthesis of alkyl glycosides. J. Mol. Catal. B: Enzym. 6: 511–532.CrossRefGoogle Scholar
  25. 25.
    Kazlauskas, R. J. (2000) Molecular modeling and biocatalysis: Explanations, predictions, limitations, and opportunities. Curr. Opin. Chem. Biol. 4: 81–88.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food SciencesSouth China University of TechnologyGuangzhouChina

Personalised recommendations