Skip to main content
Log in

First enzymatic galactosylation of acyclic nucleoside drugs by β-galactosidase: Synthesis of water-soluble β-D-galactosidic prodrugs

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Acyclic nucleoside analogs constitute an important group of antiviral agents. However, these nucleoside drugs suffer from poor water solubility and low oral bioavailability in the clinic use. In the present work, the enzymatic synthesis of the water-soluble galactosidic prodrugs of acyclic nucleosides by using bovine liver β-galactosidase was described. In the enzymatic transgalactosylation between acyclovir (ACV) and o-nitrophenyl β-galactopyranoside (oNPGal), the optimum enzyme dosage, buffer pH, temperature and molar ratio of ACV to oNPGal were 0.225 U/mL, 7.0, 40°C and 2.5, respectively, under which the initial reaction rate and the yield reached 0.40 mM/h and 29%, respectively. In addition, this enzyme could accept ganciclovir (GCV) and penciclovir (PCV) as substrates, affording the corresponding 4’-β-galactosylated derivatives with the yields of 26% and 71%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Freeman, S. and J. M. Gardiner (1996) Acyclic nucleosides as antiviral compounds. Mol. Biotechnol. 5: 125–137.

    Article  CAS  Google Scholar 

  2. De Clercq, E. (2004) Antiviral drugs in current clinical use. J. Clin. Virol. 30: 115–133.

    Article  Google Scholar 

  3. De Clercq, E. and H. J. Field (2006) Antiviral prodrugs — the development of successful prodrug strategies for antiviral chemotherapy. Br. J. Pharmacol. 147: 1–11.

    Article  Google Scholar 

  4. Rautio, J., H. Kumpulainen, T. Heimbach, R. Oliyai, D. Oh, T. Jarvinen, and J. Savolainen (2008) Prodrugs: Design and clinical applications. Nat. Rev. Drug Discovery 7: 255–270.

    Article  CAS  Google Scholar 

  5. Santos, C. R., R. Capela, C. S. G. P. Pereira, E. Valente, B. Luis Gouveia, C. Pannecouque, E. D. Clercq, R. Moreira, and P. Gomes (2009) Structure-activity relationships for dipeptide prodrugs of acyclovir: Implications for prodrug design. Eur. J. Med. Chem. 44: 2339–2346.

    Article  CAS  Google Scholar 

  6. Colla, L., E. D. Clercq, R. Busson, and H. Vanderhaeghe (1983) Synthesis and antiviral activity of water-soluble esters of acyclovir [9-[(2-hydroxyethoxy )methyl]guanine]. J. Med. Chem. 26: 602–604.

    Article  CAS  Google Scholar 

  7. Patel, K., S. Trivedi, S. Luo, Xiaodong Zhu, D. Pal, E. R. Kern, and A. K. Mitra (2005) Synthesis, physicochemical properties and antiviral activities of ester prodrugs of ganciclovir. Int. J. Pharm. 305: 75–89.

    Article  CAS  Google Scholar 

  8. Curran, M. and S. Noble (2001) Valganciclovir. Drugs. 61: 1145–1150.

    Article  CAS  Google Scholar 

  9. Wu, C. Z., J. H. Jang, M. Woo, J. S. Ahn, J. S. Kim, and Y. S. Hong (2012) Enzymatic glycosylation of non-benzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl. Environ. Microbiol. 78: 7680–7686.

    Article  CAS  Google Scholar 

  10. Abraham, R., N. Aman, R. von Borstel, M. Darsley, B. Kamireddy, J. Kenten, G. Morris, and R. Titmas (1994) Conjugates of COL-1 monoclonal antibody and β-D-galactosidase can specifically kill tumor cells by generation of 5-fluorouridine from the prodrug β-D-galactosyl-5-fluorouridine. Cell Biochem. Biophys. 24: 127–133.

    Google Scholar 

  11. Watanabe, K. A., A. Matsuda, M. J. Halat, D. H. Hollenberg, J. S. Nisselbaum, and J. J. Fox (1981) Nucleosides. 114. 5′-O-Glucuronides of 5-fluorouridine and 5-fluorocytidine. Masked precursors of anticancer nucleosides. J. Med. Chem. 24: 893–897.

    Article  CAS  Google Scholar 

  12. Li, N., T. J. Smith, and M. H. Zong (2010) Biocatalytic transformation of nucleoside derivatives. Biotechnol. Adv. 28: 348–366.

    Article  CAS  Google Scholar 

  13. Binder, W. H., H. Kahlig, and W. Schmid (1995) Galactosylation by use of β-galactosidase: Enzymatic syntheses of disaccharide nucleosides. Tetrahedron: Asymm. 6: 1703–1710.

    Article  CAS  Google Scholar 

  14. Andreotti, G., A. Trincone, and A. Giordano (2007) Convenient synthesis of β-galactosyl nucleosides using the marine β-galactosidase from Aplysia fasciata. J. Mol. Catal. B: Enzym. 47: 28–32.

    Article  CAS  Google Scholar 

  15. Blazek, J., P. Jansa, O. Baszczynski, M. M. Kaiser, M. Otmar, M. Krecmerova, M. Drancinsky, A. Holy, and B. Kralova (2012) An enzymatic glycosylation of nucleoside analogues using β-galactosidase from Escherichia coli. Bioorg. Med. Chem. 20: 3111–3118.

    Article  CAS  Google Scholar 

  16. Ye, M., L. Q. Yan, N. Li, and M. H. Zong (2012) Facile and regioselective enzymatic 5′-galactosylation of pyrimidine 2′-deoxy-nucleosides catalyzed by β-glycosidase from bovine liver. J. Mol. Catal. B: Enzym. 79: 35–40.

    Article  CAS  Google Scholar 

  17. Yan, L. Q., N. Li, and M. H. Zong (2012) First and facile enzymatic synthesis of β-fucosyl-containing disaccharide nucleosides through β-galactosidase-catalyzed regioselective glycosylation. J. Biotechnol. 164: 371–375.

    Article  CAS  Google Scholar 

  18. Ye, M., C. Y. Yu, N. Li, and M. H. Zong (2011) Highly regioselective glucosylation of 2′-deoxynucleosides by using the crude β-glycosidase from bovine liver. J. Biotechnol. 155: 203–208.

    Article  CAS  Google Scholar 

  19. National Institute of Advanced Industrial Science and Technology (AIST), Japan. Spectral database for organic compounds, SDBS. http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng.

  20. Lichtenthaler, F. W., W. Eberhard, and S. Braun (1981) Nucleosides, 45.-Assignment of glycosylation sites in O-hexopyranosylribonucleosides by 13C NMR. Tetrahedron Lett. 22: 4401–4404.

    Article  CAS  Google Scholar 

  21. Chen, L., N. Li, and M. H. Zong (2012) A Glucose-tolerant β-glucosidase from Prunus domestica seeds: purification and characterization. Proc. Biochem. 47: 127–132.

    Article  CAS  Google Scholar 

  22. Zeng, Q. M., N. Li, and M. H. Zong (2010) Highly regioselective galactosylation of floxuridine catalyzed by β-galactosidase from bovine liver. Biotechnol. Lett. 32: 1251–1254.

    Article  CAS  Google Scholar 

  23. Isobe, K., M. Yamashita, S. Chiba, N. Takahashi, and T. Koyama (2013) Characterization of new β-galactosidase from acidophilic fungus, Teratosphaeria acidotherma AIU BGA-1. J. Biosci. Bioeng. 116: 293–297.

    Article  CAS  Google Scholar 

  24. van Rantwijk, F., M. W. V. Oosterom, and R. A. Sheldon (1999) Glycosidase-catalysed synthesis of alkyl glycosides. J. Mol. Catal. B: Enzym. 6: 511–532.

    Article  Google Scholar 

  25. Kazlauskas, R. J. (2000) Molecular modeling and biocatalysis: Explanations, predictions, limitations, and opportunities. Curr. Opin. Chem. Biol. 4: 81–88.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Li or Min-Hua Zong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, LQ., Li, N. & Zong, MH. First enzymatic galactosylation of acyclic nucleoside drugs by β-galactosidase: Synthesis of water-soluble β-D-galactosidic prodrugs. Biotechnol Bioproc E 19, 586–591 (2014). https://doi.org/10.1007/s12257-013-0823-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0823-1

Keywords

Navigation