Skip to main content
Log in

Decolorization of triphenylmethane dyes by wild mushrooms

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Triphenylmethane dyes such as Crystal Violet (CV) and Malachite Green (MG) are common textile dyes. MG, which is toxic to humans, is widely used in aquaculture as an antifungal agent. In this study, 56 mushroom strains from 12 species of wild mushrooms were examined on dye-containing PDA plates to evaluate their potential for the bioremediation of synthetic dyes. Pycnoporus coccineus, Coriolus versicolor, and Lentinula edodes showed fair growth on CV, but only a few survived on MG. However, a decolorization experiment in an aqueous system revealed that the growth on MG-containing solid medium did not directly match the decolorization of MG in the aqueous system. C. versicolor IUM0061 grew well on both MG and CV plates, but could not decolorize MG in the reaction mixture. Conversely, HPLC analysis revealed that P. coccineus IUM0032, which could not grow on the MG plate, completely mineralized MG within 3 days. A subsequent enzyme activity assay revealed a high lignin peroxidase activity in the reaction mixture, indicating that lignin peroxidase is the key enzyme involved in degradation of MG in P. coccineus IUM0032.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. Sarkanen, K. V. and C. H. Ludwig (1971) Lignins: Occurrence, formation, structure and reactions. pp. 1–18. John Wiley & Sons, NY, USA.

    Google Scholar 

  2. Barr, D. P. and S. D. Aust (1994) Mechanisms white rot fungi use to degrade pollutants. Environ. Sci. Technol. 28: 78–87.

    Article  Google Scholar 

  3. Archibald, F. S., R. Bourbonnais, L. Jurasek, M. G. Paice, and I. D. Reid (1997) Kraft pulp bleaching and delignification by Trametes versicolor. J. Biotechnol. 53: 215–236.

    Article  CAS  Google Scholar 

  4. Higuchi, T. (1989) Mechanisms of lignin degradation by lignin peroxidase and laccase of white-rot fungi. pp. 482–502. In: N. G. Lewis and M. G. Paice (eds.). Plant cell wall polymers: Biogenesis and biodegradation. ACS Publications, Washington, D. C., USA.

    Chapter  Google Scholar 

  5. Cerniglia, C. E. (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351–368.

    Article  CAS  Google Scholar 

  6. Madhavi, V. and S. S. Lele (2009) Laccase: Properties and applications. BioResour. 4: 1694–1717.

    Google Scholar 

  7. Pazarlioglu, N. K., M. Sariisik, and A. Telefoncu (2005) Laccase: Production by Trametes versicolor and application to denim washing. Proc. Biochem. 40: 1673–1678.

    Article  CAS  Google Scholar 

  8. Magan, N., S. Fragoeiro, and C. Bastos (2010) Environmental factors and bioremediation of xenobiotics using white rot fungi. Mycobiology 38: 238–248.

    Article  Google Scholar 

  9. Riva, S. (2006) Laccases: Blue enzymes for green chemistry. Trends Biotechnol. 24: 219–226.

    Article  CAS  Google Scholar 

  10. Li, Y., L. Zhang, M. Li, Z. Pan, and D. Li (2012) A disposable biosensor based on immobilization of laccase with silica spheres on the MWCNTs doped screen-printed electrode. Chem. Central J. 6: 1–3.

    Article  Google Scholar 

  11. Chawla, S., R. Rawal, Shabnam, R. C. Kuhad, and C. S. Pundir (2011) An amperometric polyphenol biosensor based on laccase immobilized on epoxy resin membrane. Anal. Methods 3: 709–714.

    Article  CAS  Google Scholar 

  12. Minson, M., M. T. Meredith, A. Shrier, F. Giroud, D. Hickey, D. T. Glatzhofer, and S. D. Minteer (2012) High performance glucose/O2 biofuel cell: Effect of utilizing purified laccase with anthracene-modified multi-walled carbon nanotubes. J. Electrochem. Soc. 159: 166–170.

    Article  Google Scholar 

  13. Reddy, C. A. (1995) The potential for white-rot fungi in the treatment of pollutants. Curr. Opin. Biotechnol. 6: 320–328.

    Article  CAS  Google Scholar 

  14. Lau, K. L., Y. Y. Tsang, and S. W. Chiu (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52: 1539–1546.

    Article  CAS  Google Scholar 

  15. Chiu, S. W., T. Gao, C. Chan, and C. Ho (2009) Removal of spilled petroleum in industrial soils by spent compost of mushroom Pleurotus pulmonarius. Chemosphere 75: 837–842.

    Article  CAS  Google Scholar 

  16. Matsubara, M., J. M. Lynch, and F. De Leij (2006) A simple screening procedure for selecting fungi with potential for use in the bioremediation of contaminated land. Enz. Microb. Technol. 39: 1365–1372.

    Article  CAS  Google Scholar 

  17. Cripps, C., J. A. Bumpus, and S. D. Aust (1990) Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Appl. Environ. Microbiol. 56: 1114–1118.

    CAS  Google Scholar 

  18. Kalmis, E., N. Azbar, and F. Kalyoncu (2008) Evaluation of two wild types of Pleurotus ostreatus (MCC07 and MCC20) isolated from nature for their ability to decolorize Benazol Black ZN textile dye in comparison to some commercial types of white rot fungi: Pleurotus ostreatus, Pleurotus djamor, and Pleurotus citrinopileatus. Can. J. Microbiol. 54: 366–370.

    Article  CAS  Google Scholar 

  19. Revankar, M. S. and S. S. Lele (2007) Synthetic dye decolorization by white rot fungus, Ganoderma sp. WR-1. Bioresour. Technol. 98: 775–780.

    Article  CAS  Google Scholar 

  20. Renganathan, S., W. R. Thilagaraj, L. R. Miranda, P. Gautam, and M. Velan (2006) Accumulation of acid orange 7, Acid Red 18 and Reactive Black 5 by growing Schizophyllum commune. Bioresour. Technol. 97: 2189–2193.

    Article  CAS  Google Scholar 

  21. Yao, J., R. Jia, L. Zheng, and B. Wang (2013) Rapid decolorization of azo dyes by crude manganese peroxidase from Schizophyllum sp. F17 in solid-state fermentation. Biotechnol. Bioproc. Eng. 18: 868–877.

    Article  CAS  Google Scholar 

  22. Borchert, M. and J. A. Libra (2001) Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol. Bioeng. 75: 313–321.

    Article  CAS  Google Scholar 

  23. Ogugbue, C. J. and T. Sawidis (2011) Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol. Res. Int. doi: 10.4061/2011/967925.

    Google Scholar 

  24. Mohan, D., K. P. Singh, G. Singh, and K. Kumar (2002) Removal of dyes from wastewater using flyash, a low-cost adsorbent. Ind. Eng. Chem. Res. 41: 3688–3695.

    Article  CAS  Google Scholar 

  25. Culp, S. J. and F. A. Beland (1996) Malachite green: A toxicological review. Int. J. Toxicol. 15: 219–238.

    Article  Google Scholar 

  26. Bragulat, M. R., M. L. Abarca, M. T. Bruguera, and F. J. Cabanes (1991) Dyes as fungal inhibitors: Effect on colony diameter. Appl. Environ. Microbiol. 57: 2777–2780.

    CAS  Google Scholar 

  27. Murugesan, K., I. H. Yang, Y. M. Kim, J. R. Jeon, and Y. S. Chang (2009) Enhanced transformation of malachite green by laccase of Ganoderma lucidum in the presence of natural phenolic compounds. Appl. Microbiol. Biotechnol. 82: 341–350.

    Article  CAS  Google Scholar 

  28. Ollikka, P., K. Alhonmäki, V. Leppänen, T. Glumoff, T. Raijola, and I. Suominen (1993) Decolorization of azo, triphenyl methane, heterocyclic, and polymeric dyes by lignin peroxidase isoenzymes from Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59: 4010–4016.

    CAS  Google Scholar 

  29. Cha, C., D. R. Doerge, and C. E. Cerniglia (2001) Biotransformation of malachite green by the fungus Cunninghamella elegans. Appl. Environ. Microbiol. 67: 4358–4360.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeon-Su Ro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H.W., Yang, Y.H., Kim, S.W. et al. Decolorization of triphenylmethane dyes by wild mushrooms. Biotechnol Bioproc E 19, 519–525 (2014). https://doi.org/10.1007/s12257-013-0663-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0663-z

Keywords

Navigation