Skip to main content
Log in

Gender-dimorphic regulation of liver proteins in Streptozotocin-induced diabetic rats

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

To address the issue of gender importance in development of diabetes, in the present study, we performed two-dimensional gel electrophoresis (2-DE)-based proteomic study in Streptozotocin (STZ)-induced diabetic rats by investigating gender-dimorphic differential regulation patterns of liver proteins. Animal experiments revealed that females have greater susceptibility towards developing diabetes due to lower insulin secretion, greater severity of liver damage, more impaired regulation of sex hormones as well as lower glucose tolerance and higher blood glucose levels as compared to male diabetic rats when exposed to STZ. Proteomic analysis detected about 730 hepatic protein spots, ranging from 6 to 240 kDa mass between pH 3 ∼ 10, of which 45 identified proteins showed gender-dimorphic regulation. Most interesting is that our gender-specific proteome comparison showed that male and female rats displayed different regulations of hepatic proteins involved in lipid metabolism, methionine and citric acid cycles, as well as antioxidative and stress defense system. We for the first time identified chaperonin 10 and D-dopachrome tautomerase showing gender-dependent differential regulation between healthy control and diabetic rats, which have not been reported to date with respect to diabetes pathophysiology. In conclusion, current proteomic study revealed that more severely impaired hepatic protein regulation in female diabetic rats was influential on greater susceptibility of females to STZ-induced diabetes. We expect that the present proteomic data can provide valuable information for evidence-based gender-specific treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO report (2012) http://www.who.int/mediacentre/factsheets/fs312/en/

  2. Atkinson, M. A., J. Bluestone, G. Eisenbarth, M. Hebrok, K. Herold, D. Accili, M. Pietropaolo, P. Arvan, M. Herrath, D Mar kel, and C. Rhodes (2011) How does type 1 diabetes develop? The notion of homicide or β-cell suicide revisited. Diabetes 60: 1370–1379.

    Article  CAS  Google Scholar 

  3. Report of the Expert Committee on Diagnosis and Classification of Diabetes Mellitus (1997) Expert committee on the diagnosis and classification of diabetes mellitus. Diab. Care 20: 1183–1197.

    Google Scholar 

  4. Gale, E. A. and K. Gillespie (2001) Diabetes and gender. Diabetol. 44: 3–15.

    Article  CAS  Google Scholar 

  5. Legato, M. J., A. Gelzer, R. Goland, S. Ebner, S. Rajan, V. Villagra, and M. Kosowski (2006) Gender-specific care of the patient with diabetes: Review and recommendations. Gend. Med. 3: 131–158.

    Article  Google Scholar 

  6. Zillikens, M. C., M. Yazdanpanah, L. Pardo, F. Rivadeneira, Y. Aulchenko, B. Oostra, A. Uitterlinden, H. Pols, and C. Van Duijn (2008) Sex-specific genetic effects influence variation in body composition. Diabetol. 51: 2233–2241.

    Article  CAS  Google Scholar 

  7. King, H., R. Aubert, and W. Herman (1998) Global burden of diabetes, 1995–2025: Prevalence, numerical estimates, and projections. Diab. Care 21: 1414–1431.

    Article  CAS  Google Scholar 

  8. Auryan, S. and R. Itamar (2008) Gender-specific care of diabetes mellitus: Particular considerations in the management of diabetic women. Diab. Obes. Metab. 10: 1135–1156.

    CAS  Google Scholar 

  9. Kumar, K. M. P. (1996) Gender difference in diabetes mellitus. Int. J. Diab. Dev. Count. 16: 103–104.

    Google Scholar 

  10. Vital, P., E. Larrieta, and M. Hiriart (2006) Sexual dimorphism in insulin sensitivity and susceptibility to develop diabetes in rats. J. Endocrinol. 190: 425–432.

    Article  CAS  Google Scholar 

  11. Perreault, L., M. Yong, S. Agogo-Jack, E. Horton, D. Marrero, J. Crandall, and E. Barrett-Connor (2008) Sex differences in diabetes risk and the effect of intensive lifestyle modification in the diabetes prevention program. Diab.s Care 31: 1416–1421.

    Article  CAS  Google Scholar 

  12. Satav, J. G. and S. Katyare (2004) Effect of Streptozotocin induced diabetes on oxidative energy metabolism in rat liver. Ind. J. Clin. Biochem. 19: 23–31.

    Article  CAS  Google Scholar 

  13. Sajad, H. M., R. Abdui-Baqui, M. Bhagat, and S. Abdul-Wahid (2008) Biochemical and histomorphological study of streptozotocin induced diabetes mellitus in rabbits. Pak. J. Nutrit. 7: 359–364.

    Article  Google Scholar 

  14. Roy, A. and B. Chatterjee (1983) Sexual dimorphism in the liver. Ann. Rev. Physiol. 45: 37–50.

    Article  CAS  Google Scholar 

  15. Justo, R., J. Boada, M. Frontera, J. Oliver, J. Bermudez, and M. Gianotti (2005) Gender dimorphism in rat liver mitochondrial oxidative metabolism and biogenesis. Am. J. Physiol. Cell Physiol. 289: 372–378.

    Article  Google Scholar 

  16. Sparre T., M. Larsen, P. Heding, A. Karlsen, O. Jensen, and F. Pociot (2005) Unraveling the pathogenesis of type 1 diabetes with proteomics: Present and future directions. Mol. Cell Proteomics 4: 441–457.

    Article  CAS  Google Scholar 

  17. Scott, E. M., A. Carter, and J. Findlay (2005) The application of proteomics to diabetes. Diab. Vasc. Dis. Res. 2: 54–60.

    Article  Google Scholar 

  18. Korc, M. (2003) Diabetes mellitus in the era of proteomics. Mol. Cell Proteom. 2: 399–404.

    CAS  Google Scholar 

  19. Sundsten, T. and H. Ortsater (2009) Proteomics in diabetes research. Mol. Cell Endocrinol. 297: 93–103.

    Article  CAS  Google Scholar 

  20. Sattar, N. and D. Hodgkin (2012) Biomarkers for diabetes prediction, pathogenesis or pharmacotherapy guidance? Past, present and future possibilities. Diabet. Med. 29: 5–13.

    Article  CAS  Google Scholar 

  21. Jiang, Y. L., Y. Ning, X. Ma, Y. Liu, Y. Wang, Z. Zhang, C. Shan, Y. Xu, L. Yin, and Y. Yang (2011) Alteration of the proteome profile of the pancreas in diabetic rats induced by Streptozotocin. Int. J. Mol. Med. 28: 153–160.

    CAS  Google Scholar 

  22. Zhi, W., S. Purohit, C. Carey, M. Wang, and J. She (2010) Proteomic technologies for the discovery of Type 1 diabetes biomarkers. J. Diab. Sci. Technol. 4: 993–1002.

    Google Scholar 

  23. Johnson, D. T., R. Harris, S. French, A. Aponte, and R. Balaban (2009) Proteomic changes associated with diabetes in the BB-DP rat. Am. J. Physiol. Endocrinol. Metab. 296: 422–432.

    Article  Google Scholar 

  24. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  25. Wang, X., J. Choi, J. Joo, D. Kim, T. Oh., D. Choi, and J. Yun (2011) Differential expression of liver proteins between obesityprone and obesity-resistant rats in response to high fat diet. Br. J. Nutrit. 106: 612–626.

    Article  CAS  Google Scholar 

  26. Wang, X., J. Choi, T. Oh, D. Choi, R. Mukherjee, H. Liu, and J. Yun (2012) Comparative hepatic proteome analysis between lean and obese rats fed a high fat diet reveals existence of gender differences. Proteomics 12: 284–299.

    Article  CAS  Google Scholar 

  27. Choi, M., J. Choi, H. Chaudhari, K. Aseer, R. Mukherjee, and J. Yun (2013) Gender-dimorphic regulation of skeletal muscle proteins in streptozotocin-induced diabetic rats. Cell Physiol. Biochem. 31: 408–420.

    Article  CAS  Google Scholar 

  28. Shevchenko, A., M. Wilm, O. Vorm, and M. Man (1996) Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal. Chem. 68: 850–858.

    Article  CAS  Google Scholar 

  29. Khor, V. K., R. Dhir, X. Yin, R. Ahima, and W. Song (2010) Estrogen sulfotransferase regulates body fat and glucose homeostasis in female mice. Am. J. Physiol. Endocrinol. Metab. 299: 657–664.

    Article  Google Scholar 

  30. Song, W. C., Y. Qian, and A. Li (1998) Estrogen sulfotransferase expression in the human liver: Marked interindividual variation and lack of gender specificity. J. Pharmacol. Exp. Ther. 284: 1197–1202.

    CAS  Google Scholar 

  31. Khor, V. K., M. Tong, Y. Qian, and W. Song (2008) Gender-specific expression and mechanism of regulation of estrogen sulfotransferase in adipose tissues of the mouse. Endocrinol. 149: 5440–5448.

    Article  CAS  Google Scholar 

  32. Bass, N. M., J. Manning, R. Ockner, J. Gordon, S. Seetharam, and D. Alpers (1985) Regulation of the biosynthesis of two distinct fatty acid-binding proteins in rat liver and intestine. Influences of sex difference and of clofibrate. J. Biol. Chem. 260: 1432–1436.

    CAS  Google Scholar 

  33. Veerkamp, J. H. (1995) Fatty acid transport and fatty acid-binding proteins. Proc. Nutr. Soc. 54: 23–37.

    Article  CAS  Google Scholar 

  34. Gossett, R. E., A. Frolov, J. Roths, W. Behnke, A. Kier, and F. Schroeder (1996) Acyl-CoA binding proteins: Multiplicity and function. Lipids 31: 895–918.

    Article  CAS  Google Scholar 

  35. May, C. L., T. Pineau, K. Bigot, C. Kohl, J. Girard, and J. Pégorier (2000) Reduced hepatic fatty acid oxidation in fasting PPARα null mice is due to impaired mitochondrial hydroxymethylglutaryl-CoA synthase gene expression. FEBS Lett. 475: 163–166.

    Article  Google Scholar 

  36. Williamson, D. H., M. Bates, and H. Krebs (1968) Activity and intracellular distribution of enzymes of ketone-body. Biochem. J. 108: 353–361.

    CAS  Google Scholar 

  37. Harris, I. R., H. Hoppner, W. Siefken, A. Farrell, and K. Wittern (2000) Regulation of HMG CoA synthase and HMG CoA reductase by insulin and epidermal growth factor in HaCaT Keratinocytes. J. Invest. Dermatol. 114: 83–87.

    Article  CAS  Google Scholar 

  38. Boquist, L., I. Ericsson, R. Lorentzon, and L. Nelson (1985) Alterations in mitochondrial aconitase activity and respiration, and in concentration of citrate in some organs of mice with experimental or genetic diabetes. FEBS Lett. 183: 173–176.

    Article  CAS  Google Scholar 

  39. Kil, I. S., J. Lee, A. Shin, and J. Park (2004) Glycation-induced inactivation of NADP+-dependent isocitrate dehydrogenase: Implications for diabetes and aging. Free Radic. Biol. Med. 37: 1765–1778.

    Article  CAS  Google Scholar 

  40. Jo, S. H., M. Son, H. Koh, S. Lee, I. Song, Y. Kim, Y. Lee, K. Jeong, W. Kim, J. Park, B. Song, and T. Huh (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J. Biol. Chem. 276: 16168–16176.

    Article  CAS  Google Scholar 

  41. Kakkar, R., S. Mantha, J. Radhi, K. Prasad, and J. Kalra (1998) Increased oxidative stress in rat liver and pancreas during progression of Streptozotocin-induced diabetes. Clin. Sci. 94: 623–632.

    CAS  Google Scholar 

  42. Hamdena, K., S. Carreaub, M. Boujbihaa, S. Lajmic, D. Aloulouc, D. Kchaoud, and A. Elfeki (2008) Hyperglycaemia, stress oxidant, liver dysfunction and histological changes in diabetic male rat pancreas and liver: Protective effect of 17 β-estradiol. Steroids 73: 495–501.

    Article  Google Scholar 

  43. Lei, X. G. and M. Vatamaniuk (2011) Two tales of antioxidant enzymes on beta cells and diabetes. Antioxid. Redox Sig. 14: 489–503.

    Article  CAS  Google Scholar 

  44. Cho, S. Y., J. Park, E. Park, M. Choi, M. Lee, S. Jeon, M. Jang, M. Kim, and Y. Park (2002) Alternation of hepatic antioxidant enzyme activities and lipid profile in Streptozotocin-induced diabetic rats by supplementation of dandelion water extract. Clin. Chim. Acta 317: 109–117.

    Article  CAS  Google Scholar 

  45. Yilmaz, H. R., E. Uz, N. Yucel, I. Altuntas, and N. Ozcelik (2004) Protective effect of caffeic acid phenethyl ester (CAPE) on lipid peroxidation and antioxidant enzymes in diabetic rat liver. J. Biochem. Mol. Toxicol. 18: 234–238.

    Article  CAS  Google Scholar 

  46. Rodrigues, G. R., F. Di Naso, M. Porawski, E. Marcolin, N. Kretzmann, A. Ferraz, M. Richter, C. Marroni, and N. Marroni (2012) Treatment with aqueous extract from Croton cajucara Benth reduces hepatic oxidative stress in Streptozotocin-diabetic rats. J. Biomed. Biotechnol. doi: 10.1155/2012/902351.

    Google Scholar 

  47. Saxena, A. K., P. Srivastava, R. Kale, and N. Baquer (1993) Impaired antioxidant status in diabetic rat liver: Effect of vanadate. Biochem. Pharmacol. 45: 539–542.

    Article  CAS  Google Scholar 

  48. Sanders, R. A., F. Rauscher, and J. Watkins (2001) Effects of quercetin on antioxidant defense in streptozotocin induced diabetic rats. J. Biochem. Mol. Tox. 15: 143–149.

    Article  CAS  Google Scholar 

  49. Prabakaran, D. and N. Ashok kumar (2013) Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie. 95: 366–373.

    Article  CAS  Google Scholar 

  50. Maritim, A. C., R. Sanders, and J. Watkins III (2003) Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxic. 7: 24–38.

    Article  Google Scholar 

  51. Bast, A., G. Wolf, I. Oberbaumer, and R. Walther (2002) Oxidative and nitrosative stress induces peroxiredoxins in pancreatic beta cells. Diabetol. 45: 867–876.

    Article  CAS  Google Scholar 

  52. Hwang, H. J., S. Kim, Y. Baek, S. Lee, H. Hwang, S. Kumar, M. Rahman, and J. Yun (2008) Differential expression of liver proteins in Streptozotocin-induced diabetic rats in response to hypoglycemic mushroom polysaccharides. Kor. J. Chem. Eng. 25: 308–322.

    Article  CAS  Google Scholar 

  53. Wood, Z. A., E. Schröder, J. Harris, and L. Poole (2003) Structure, mechanism and regulation of peroxiredoxins. Trends Biochem. Sci. 28: 32–40.

    Article  CAS  Google Scholar 

  54. Raza, H., M. Robin, J. Fang, and N. Avadhani (2002) Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress. Biochem. J. 366: 45–55.

    CAS  Google Scholar 

  55. Sun, H. D., Y. Ru, D. Zhang, S. Yin, L. Yin, Y. Xie, Y. Guan, and S. Liu (2012) Proteomic analysis of glutathione S-transferase isoforms in mouse liver mitochondria. World J. Gastroenterol. 18: 3435–3442.

    Article  CAS  Google Scholar 

  56. Sindhu, R. K., J. Koo, C. Roberts, and N. Vaziri (2004) Dysregulation of hepatic superoxide dismutase, catalase and glutathione peroxidase in diabetes: Response to insulin and antioxidant therapies. Clin. Exp. Hypertns. 26: 43–53.

    Article  CAS  Google Scholar 

  57. Miller, A. L. (2003) The Methionine-homocysteine cycle and its effects on cognitive diseases. Altern. Med. Rev. 8: 7–19.

    Google Scholar 

  58. Lee, A. S. (2001) The glucose-regulated proteins: Stress induction and clinical applications. Trends Biochem. Sci. 26: 504–510.

    Article  CAS  Google Scholar 

  59. Yu, Z. F., H. Luo, W. Fu, and M. Mattson (1999) The endoplasmic reticulum stress-responsive protein GRP78 protects neurons against excitotoxicity and apoptosis: Suppression of oxidative stress and stabilization of calcium homeostasis. Exp. Neurol. 155: 302–314.

    Article  CAS  Google Scholar 

  60. Szántó I., P. Gergely, Z. Marcsek, T. Bányász, J. Somogyi, and P. Csermely (1994) Changes of the 78 kDa glucose-regulated protein (grp78) in livers of diabetic rats. Acta Physiol. Hung. 83: 333–342.

    Google Scholar 

  61. Hartman, D. J., N. Hoogenraad, R. Condron, and P. Høj (1992) Identification of a mammalian 10-kDa heat shock protein, a mitochondrial chaperonin 10 homologue essential for assisted folding of trimeric ornithine transcarbamoylase in vitro. Proc. Natl. Acad. Sci. 89: 3394–3398.

    Article  CAS  Google Scholar 

  62. Johnson, B. J., T. Le, C. Dobbin, T. Banovic, C. Howard, F. Flores, D. Vanags, D. Naylor, G. Hill, and A. Suhrbier (2005) Heat shock protein 10 inhibits lipopolysaccharide-induced inflammatory mediator production. J. Biol. Chem. 280: 4037–4047.

    Article  CAS  Google Scholar 

  63. Takizawa, S., T. Endo, X. Wanjia, S. Tanaka, M. Takahashi, and T. Kobayashi (2009) HSP 10 is a new autoantigen in both autoimmune pancreatitis and fulminant type 1 diabetes. Biochem. Biophys. Res. Commun. 386: 192–196.

    Article  CAS  Google Scholar 

  64. Merk, M., R. Mitchell, S. Endres, and R. Bucala (2012) Ddopachrome tautomerase (D-DT or MIF-2): Doubling the MIF cytokine family. Cytokine 59: 10–17.

    Article  CAS  Google Scholar 

  65. Sugimoto, H., M. Taniguchi, A. Nakagawa, I. Tanaka, M. Suzuki, and J. Nishihira (1999) Crystal structure of human DDopachrome tautomerase, a homologue of macrophage migration inhibitory factor, at 1.54 Å resolution. Biochem. 38: 3268–3279.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhari, H.N., Yun, J.W. Gender-dimorphic regulation of liver proteins in Streptozotocin-induced diabetic rats. Biotechnol Bioproc E 19, 93–107 (2014). https://doi.org/10.1007/s12257-013-0612-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0612-x

Keywords

Navigation