Skip to main content
Log in

Optimization of biodrying pretreatment of municipal solid waste and microbial fuel cell treatment of leachate

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The biodrying pretreatment of municipal solid waste (MSW) and the treatment of leachate were investigated. The biological oxygen demand (BOD) and NH4 +-N concentration of leachate from MSW biodrying pretreatment were measured, and the optimal conditions for MSW biodrying pretreatment and microbial fuel cell (MFC) performance were established. The results show that the optimal temperature and time for biodrying pretreatment of MSW were 40°C and 6 day, resulting in 30% weight loss of MSW, 20,800 mg/L leachate BOD, and 1,410 mg/L leachate NH4 +-N. Effects of leachate properties on MFC performance were then studied. The optimal conditions for electricity generation of the MFC were neutral pH, 5,093 mg/L leachate BOD, and 341 mg/L leachate NH4 +-N. The stable voltage of MFC generated using diluted leachate was 0.32 V, and the removal efficiencies of BOD and NH4 +-N by the MFC were 86.0 and 88.8% after 7 day of treatment, respectively. These findings provide guidelines for the pretreatment of MSW and the treatment of leachate, and for further research and actual engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang, G. Q. (2000) The Engineering of Solid Waste Disposal. Science Press, Beijing, China.

    Google Scholar 

  2. Cao, Z. Z., H. C. Gao, and J. P. Chen (2001) Discussion on the development orientation of china’s current domestic refuse disposal. Eng. Technol. 2: 13–18.

    Google Scholar 

  3. Hu, J. P., X. X. Tang, and J. X. Li (2002) The pollution of municipal soild waste and its prevention technology. J. Vocat. Technical Coll. Jinhua 2: 43–45.

    Google Scholar 

  4. Logan, B. E. and J. M. Regan (2006) Microbial fuel cells-challenges and applications. Environ. Sci. Technol. 40: 5172–5180.

    Article  CAS  Google Scholar 

  5. Park, D. H. and J. G. Z. Zeikus (2003) Improved fuel cell and electrode designs for producing electricity from microbial degradation. Biotechnol. Bioeng. 81: 348–355.

    Article  CAS  Google Scholar 

  6. Gil, G. C., I. S. Chang, B. H. Kim, M. Kim, J. K. Jang, H. S. Park, and J. M. Kim (2003) Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18: 327–334.

    Article  CAS  Google Scholar 

  7. Rabaey, K. and W. Verstraete (2005) Microbial fuel cells, novel biotechnology for energy generation. Trends Biotechnol. 23: 291–298.

    Article  CAS  Google Scholar 

  8. Min, B. and B. E. Logan (2004) Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell. Environ. Sci. Technol. 38: 5809–5814.

    Article  CAS  Google Scholar 

  9. Logan, B. E. (2005) Simultaneous wastewater treatment and biological electricity generation. Water Sci. Technol. 52: 31–37.

    CAS  Google Scholar 

  10. Sebastià, P., S. Marc, C. Marta, C. Marina, B. Dolors, and C. Jesús (2011) Microbial fuel cell application in landfill leachate treatment. J. Hazardous Mat. 185: 763–767.

    Article  Google Scholar 

  11. Habermann, W. and E. H. Pommer (1991) Biological fuel cells with sulfide storage capacity. Appl. Microbiol. Biotechnol. 35: 128–133.

    CAS  Google Scholar 

  12. You, S.J., Q. L. Zhao, J. Q. Jiang, J. N. Zhang, and S. Q. Zhao (2006) Sustainable approach for leachate treatment, electricity generation in microbial fuel cell. Environ. Sci. Health A. 41: 2721–2734.

    Article  CAS  Google Scholar 

  13. Zhang, J. N., Q. L. Zhao, S. J. You, J. Q. Jiang, and N. Q. Ren (2008) Continuous electricity production from leachate in a novel upflowair-cathode membrane-free microbial fuel cell. Water Sci. Technol. 57: 1017–1021.

    Article  CAS  Google Scholar 

  14. Greenman, J., A. Gálvez, L. Giusti, and I. Ieropoulos (2009) Electricity from landfill leachate using microbial fuel cells, Comparison with a biological aerated filter. Enz. Microb. Technol. 44: 112–119.

    Article  CAS  Google Scholar 

  15. Gálvez, A., J. Greenman, and I. Ieropoulos (2009) Landfill leachate treatment with microbial fuel cells; Scale-up through plurality. Bioresour. Technol. 100: 5085–5091.

    Article  Google Scholar 

  16. American Public Health Association (APHA) (1985) Standard methods for the examination of water and wastewater. pp: 324–391. Architecture and Building Press, Beijing, China.

    Google Scholar 

  17. Deng, L. F., F. B. Li, S. G. Zhou, D. Y. Huang, and J. R. Ni (2009) A study of electron-shuttle mechanism in Klebsiella pneumoniae based-microbial fuel cells. Chin. Sci. Bull. 54: 2983–2987.

    Google Scholar 

  18. Yuan, H. R., L. F. Deng, Y. Chen, and S. G. Zhou (2012) Electricity generation from municipal solid waste leachate using microbial fuel cell technology. J. Basic Sci. Eng. 20: 800–810.

    Google Scholar 

  19. Kjeldsen, P., A. Morton Barlaz, A. P. Rooker, A. Baun, A. Ledin, and T. H. Christensen (2002) Present and long-term composition of Msw landfill leachate, a review. Critic. Rev. Environ. Sci. Technol. 32: 297–336.

    Article  CAS  Google Scholar 

  20. Lou, Z. Y. and Y. C. Zhao (2006) Characterization of leachate generated in different seasons. Technol. Wat. Treatment 32: 38–40.

    CAS  Google Scholar 

  21. Wang, Y. C., Q. X. Yuan, J. H. Xie, and C. Y. Gao (2009) Characteristic studies on anaerobic fermentation for kitchen waste. Chin. J. Env. Eng. 3: 1677–1682.

    CAS  Google Scholar 

  22. Tatsi, A. A. and A. I. Zouboulis (2002) A field investigation of the quantity and quality of leachate from a municipal solid waste landfill in a Mediterranean climate (Thessaloniki,Greece). Adv. Environ. Res. 6: 207–219.

    Article  CAS  Google Scholar 

  23. Zhang, H., L. P. Sun, Y. An, and A. Q. Wang (2010) Research advances in characteristics of MSW landfill leachate. Sichuan Environ. 29: 113–118.

    Google Scholar 

  24. Park, D. H. and J. G. Zeikus (2000) Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66: 1292–1297.

    Article  CAS  Google Scholar 

  25. Oh, S. E., B. Min, and B. E. Logan (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38: 4900–4904.

    Article  CAS  Google Scholar 

  26. Lu, N., B. Zhou, L. F. Deng, S. G. Zhou, and J. R. Ni (2009) Starch wastewater treatment using MnO2-catalyzed microbial fuel cells. J. Basic Sci. Eng. 17: 65–73.

    Google Scholar 

  27. Behera, M. and M. M. Ghangrekar (2009) Performance of microbial fuel cells in response to change in sludge loading rate at different anodic feed pH. Bioresour. Technol. 100: 5114–5121.

    Article  CAS  Google Scholar 

  28. Behera, M., P. S. Jana, T. T. More, and M. M. Ghangreka (2010) Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochem. 79: 228–233.

    Article  CAS  Google Scholar 

  29. He, Z., Y. L. Huang, A. K. Manohar, and F. Mansfeld (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochem. 74: 78–82.

    Article  CAS  Google Scholar 

  30. Yuan, Y., S. G. Zhou, N. Xu, and L. Zhuang (2011) Electrochemical characterization of anodic biofilms enriched with glucose and acetate in single-chamber microbial fuel cells. Colloid Surf. B, Biointer. 82: 641–646.

    Article  CAS  Google Scholar 

  31. Bond, D. R. and D. R. Lovley (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548–1555.

    Article  CAS  Google Scholar 

  32. Katuri, K. P., P. Kavanagh, S. Rengaraj, and D. Leech (2010) Geobacter sulfurreducens biofilms developed under different growth conditions on glassy carbon electrodes, insights using cyclic voltammetry. Chem. Commun. 46: 4758–4760.

    Article  CAS  Google Scholar 

  33. Liu, Y., F. Harnisch, K. Fricke, R. Sietmann, and U. Schröder (2008) Improvement of the anodic bioelectrocatalysis activity of mixed culture biofilm by simple consecutive electrochemical selection procedure. Biosens. Bioelectron. 24: 1006–1011.

    Article  CAS  Google Scholar 

  34. Kim, J. R., Y. Zuo, J. M. Regan, and B. E. Logan (2008) Analysis of ammonia loss mechanisms in microbial fuel cells treating animal wastewater. Biotechnol. Bioeng. 99: 1120–1127.

    Article  CAS  Google Scholar 

  35. Puig, S., M. Serra, M. Coma, M. Cabré, M. D. Balaguer, and J. Colprim (2010) Effect of pH on nutrient dynamics and electricity production using microbial fuel cells. Bioresour. Technol. 101: 9594–9599.

    Article  CAS  Google Scholar 

  36. Liu, H., S. Cheng, and B. E. Logan (2005) Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environ. Sci. Technol. 39: 5488–5493.

    Article  CAS  Google Scholar 

  37. Liu, G. Y. (2010) Analysis of treatment process of municipal garbage leachate. Coastal Enterprises and Sci. Technol. 3: 39–40.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, H., Deng, L. & Chen, Y. Optimization of biodrying pretreatment of municipal solid waste and microbial fuel cell treatment of leachate. Biotechnol Bioproc E 19, 668–675 (2014). https://doi.org/10.1007/s12257-013-0575-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0575-y

Keywords

Navigation