Advertisement

Biotechnology and Bioprocess Engineering

, Volume 19, Issue 4, pp 629–640 | Cite as

Proteomic analysis of Synechocystis sp. PCC6803 responses to low-temperature and high light conditions

  • Seong-Joo Hong
  • HyoJin Kim
  • Jin Hee Jang
  • Byung-Kwan Cho
  • Hyung-Kyoon Choi
  • Hookeun Lee
  • Choul-Gyun Lee
Research Paper

Abstract

The global changes in protein expression of Synechocystis sp. PCC6803, a photosynthetic bacterium for the production of secondary metabolites as a green cell factory, were investigated by proteome separation and a subsequent tandem mass spectrometry. Two different proteome separation techniques, strong cation exchange chromatography and off-gel electrophoresis, were applied. The combination of the two proteome separation techniques enabled the comparative analysis of the differential regulation of the Synechocystis proteome in response to two different environmental factors, temperature and light. A total of 1,483 proteins were identified, which represent over 40% of the genes in Synechocystis. Our data showed that fatty acid metabolism was inhibited by (3R)-hydroxymyristol acyl carrier protein dehydrase (Sll1605) under low temperature conditions. The expression of UDP-N-acetylglucosamine acyltransferase (Sll0379) and 3-O-[3-hydroxymyristoyl] glucosamine N-acyltransferase (Slr0776), which is involved in lipopolysaccharide metabolism, was not observed under high light conditions. Under high light exposure, proteins related to iron-sulfur metabolism were detected, which may be responsible for maintaining the redox potential of the photosystem. High light under low temperature caused severe damage to the photosystem. Some of the responses to these stresses were similar to those previously reported for other photosynthetic organisms. Notably, this study revealed the followings: (i) low temperature inhibits fatty acid synthesis; (ii) high light inhibits lipopolysaccharides synthesis and stimulates the expression of iron-sulfur related proteins; and (iii) high light under low temperature induces the photorespiratory cycle. The global proteomic analysis clearly showed that stress conditions such as low temperature and/or high light induce cellular metabolisms related with the protection of their photosystems in the model microalga Synechocystis sp. PCC6803.

Keywords

Synechocystis sp. PCC6803 proteomics low temperature high light 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burja, A. M., S. Dhamwichukorn, and P. C. Wright (2003) Cyanobacterial postgenomic research and systems biology. Trends Biotechnol. 21: 504–511.CrossRefGoogle Scholar
  2. 2.
    Suzuki, I., Y. Kanesaki, K. Mikami, M. Kanehisa, and N. Murata (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol. Microbiol. 40: 235–244.CrossRefGoogle Scholar
  3. 3.
    Gill, R. T., E. Katsoulakis, W. Schmitt, G. Taroncher-Oldenburg, J. Misra, and G. Stephanopoulos (2002) Genome-wide dynamic transcriptional profiling of the light-to-dark transition in Synechocystis sp. strain PCC 6803. J. Bacteriol. 184: 3671–3681.CrossRefGoogle Scholar
  4. 4.
    Hihara, Y., A. Kamei, M. Kanehisa, A. Kaplan, and M. Ikeuchi (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793–806.CrossRefGoogle Scholar
  5. 5.
    Hihara, Y., K. Sonoike, M. Kanehisa, and M. Ikeuchi (2003) DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 185: 1719–1725.CrossRefGoogle Scholar
  6. 6.
    Osanai, T., S. Imamura, M. Asayama, M. Shirai, I. Suzuki, N. Murata, and K. Tanaka (2006) Nitrogen induction of sugar catabolic gene expression in Synechocystis sp. PCC 6803. DNA Res. 13: 185–195.CrossRefGoogle Scholar
  7. 7.
    Osanai, T., Y. Kanesaki, T. Nakano, H. Takahashi, M. Asayama, M. Shirai, M. Kanehisa, I. Suzuki, N. Murata, and K. Tanaka (2005) Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE. J. Biol. Chem. 280: 30653–30659.CrossRefGoogle Scholar
  8. 8.
    Schmitt, W. A. Jr. and G. Stephanopoulos (2003) Prediction of transcriptional profiles of Synechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnol. Bioeng. 84: 855–863.CrossRefGoogle Scholar
  9. 9.
    Ohkawa, H., M. Sonoda, M. Shibata, and T. Ogawa (2001) Localization of NAD(P)H dehydrogenase in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 183: 4938–4939.CrossRefGoogle Scholar
  10. 10.
    Herranen, M., N. Battchikova, P. Zhang, A. Graf, S. Sirpio, V. Paakkarinen, and E. M. Aro (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp. PCC 6803. Plant Physiol. 134: 470–481.CrossRefGoogle Scholar
  11. 11.
    Huang, F., E. Hedman, C. Funk, T. Kieselbach, W. P. Schroder, and B. Norling (2004) Isolation of outer membrane of Synechocystis sp. PCC 6803 and its proteomic characterization. Mol. Cell Proteom. 3: 586–595.CrossRefGoogle Scholar
  12. 12.
    Huang, F., I. Parmryd, F. Nilsson, A. L. Persson, H. B. Pakrasi, B. Andersson, and B. Norling (2002) Proteomics of Synechocystis sp. strain PCC 6803: Identification of plasma membrane proteins. Mol. Cell Proteom. 1: 956–966.CrossRefGoogle Scholar
  13. 13.
    Pisareva, T., M. Shumskaya, G. Maddalo, L. Ilag, and B. Norling (2007) Proteomics of Synechocystis sp. PCC 6803. Identification of novel integral plasma membrane proteins. FEBS J. 274: 791–804.CrossRefGoogle Scholar
  14. 14.
    Rajalahti, T., F. Huang, M. R. Klement, T. Pisareva, M. Edman, M. Sjostrom, A. Wieslander, and B. Norling (2007) Proteins in different Synechocystis compartments have distinguishing N-terminal features: A combined proteomics and multivariate sequence analysis. J. Proteome Res. 6: 2420–2434.CrossRefGoogle Scholar
  15. 15.
    Battchikova, N., J. P. Vainonen, N. Vorontsova, M. Keranen, D. Carmel, and E. M. Aro (2010) Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J. Proteome Res. 9: 5896–5912.CrossRefGoogle Scholar
  16. 16.
    Liu, J., L. Chen, J. Wang, J. Qiao, and W. Zhang (2012) Proteomic analysis reveals resistance mechanism against biofuel hexane in Synechocystis sp. PCC 6803. Biotechnol. Biofuels 5: 68.CrossRefGoogle Scholar
  17. 17.
    Wegener, K. M., A. K. Singh, J. M. Jacobs, T. Elvitigala, E. A. Welsh, N. Keren, M. A. Gritsenko, B. K. Ghosh, D. G. Camp, R. D. Smith, and H. B. Pakrasi (2010) Global proteomics reveal an atypical strategy for carbon/nitrogen assimilation by a cyanobacterium under diverse environmental perturbations. Mol. Cell Proteom. 9: 2678–2689.CrossRefGoogle Scholar
  18. 18.
    Bhandari, R. and P. K. Sharma (2006) High-light-induced changes on photosynthesis, pigments, sugars, lipids and antioxidant enzymes in freshwater (Nostoc spongiaeforme) and marine (Phormidium corium) cyanobacteria. Photochem. Photobiol. 82: 702–710.CrossRefGoogle Scholar
  19. 19.
    Sakamoto, T. and N. Murata (2002) Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 5: 206–210.CrossRefGoogle Scholar
  20. 20.
    Inaba, M., I. Suzuki, B. Szalontai, Y. Kanesaki, D. A. Los, H. Hayashi, and N. Murata (2003) Gene-engineered rigidification of membrane lipids enhances the cold inducibility of gene expression in Synechocystis. J. Biol. Chem. 278: 12191–12198.CrossRefGoogle Scholar
  21. 21.
    Hihara, Y., K. Sonoike, and M. Ikeuchi (1998) A novel gene, pmgA, specifically regulates photosystem stoichiometry in the cyanobacterium Synechocystis species PCC 6803 in response to high light. Plant Physiol. 117: 1205–1216.CrossRefGoogle Scholar
  22. 22.
    Sheng, J., H. W. Kim, J. P. Badalamenti, C. Zhou, S. Sridharakrishnan, R. Krajmalnik-Brown, B. E. Rittmann, and R. Vannela (2011) Effects of temperature shifts on growth rate and lipid characteristics of Synechocystis sp. PCC6803 in a bench-top photobioreactor. Bioresour. Technol. 102: 11218–11225.CrossRefGoogle Scholar
  23. 23.
    Gigova, L., G. Gacheva, N. Ivanova, and P. Pilarski (2012) Effets of temperature on Synechocystis sp. R10 (cyanoprokaryota) at two irradiance levels. I. Effect on growth, biochemical composition and defense enzyme activities. Genet. Plant Physiol. 2: 24–37.Google Scholar
  24. 24.
    Boussiba, S. (2000) Carotenogenesis in the green alga Haematococcus pluvialis: Cellular physiology and stress response. Physiol. Plant 108: 111–117.CrossRefGoogle Scholar
  25. 25.
    Reed, R. H., D. L. Richardson, S. R. C. Warr, and W. D. P. Stewart (1984) Carbohydrate accumulation and osmotic stress in cyanobacteria. J. Gen. Microbiol. 130: 1–4.Google Scholar
  26. 26.
    Takagi, M., Karseno, and T. Yoshida (2006) Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J. Biosci. Bioeng. 101: 223–226.CrossRefGoogle Scholar
  27. 27.
    Kim, D. K., S. J. Hong, J. H. Bae, N. Yim, E. Jin, and C. G. Lee (2011) Transcriptomic analysis of Haematococcus lacustris during astaxanthin accumulation under high irradiance and nutrient starvation. Biotechnol. Bioproc. Eng. 16: 698–705.CrossRefGoogle Scholar
  28. 28.
    Tran, N. P., J. K. Park, Z. H. Kim, and C. G. Lee (2009) Influence of sodium orthovanadate on the production of astaxanthin from green algae Haematococcus lacustris. Biotechnol. Bioproc. Eng. 14: 322–329.CrossRefGoogle Scholar
  29. 29.
    Schenk, P., S. Thomas-Hall, E. Stephens, U. Marx, J. Mussgnug, C. Posten, O. Kruse, and B. Hankamer (2008) Second generation biofuels: High-efficiency microalgae for biodiesel production. BioEnergy Res. 1: 20–43.CrossRefGoogle Scholar
  30. 30.
    Tran, H. L., Y. J. Ryu, D. H. Seong, S. M. Lim, and C. G. Lee (2013) An effective acid catalyst for biodiesel production from impure raw feedstocks. Biotechnol. Bioproc. Eng. 18: 242–247.CrossRefGoogle Scholar
  31. 31.
    Mironov, K. S., R. A. Sidorov, M. S. Trofimova, V. S. Bedbenov, V. D. Tsydendambaev, S. I. Allakhverdiev, and D. A. Los (2012) Light-dependent cold-induced fatty acid unsaturation, changes in membrane fluidity, and alterations in gene expression in Synechocystis. Biochim. Biophys. Acta 1817: 1352–1359.CrossRefGoogle Scholar
  32. 32.
    Los, D. A., A. Zorina, M. Sinetova, S. Kryazhov, K. Mironov, and V. V. Zinchenko (2010) Stress sensors and signal transducers in cyanobacteria. Sensors (Basel) 10: 2386–2415.CrossRefGoogle Scholar
  33. 33.
    Jeamton, W., S. Mungpakdee, M. Sirijuntarut, P. Prommeenate, S. Cheevadhanarak, M. Tanticharoen, and A. Hongsthong (2008) A combined stress response analysis of Spirulina platensis in terms of global differentially expressed proteins, and mRNA levels and stability of fatty acid biosynthesis genes. FEMS Microbiol. Lett. 281: 121–131.CrossRefGoogle Scholar
  34. 34.
    Sato, N. and N. Murata (1981) Studies on the temperature shiftinduced desaturation of fatty acids in monogalactosyl diacylglycerol in the blue-green alga (Cyanobacterium), Anabaena variabilis. Plant Cell Physiol. 22: 1043–1050.Google Scholar
  35. 35.
    Wada, H. and N. Murata (1990) Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol. 92: 1062–1069.CrossRefGoogle Scholar
  36. 36.
    Szklarczyk, D., A. Franceschini, M. Kuhn, M. Simonovic, A. Roth, P. Minguez, T. Doerks, M. Stark, J. Muller, P. Bork, L. J. Jensen, and C. Von Mering (2011) The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39: 561–568.CrossRefGoogle Scholar
  37. 37.
    Katoh, H., N. Hagino, A. R. Grossman, and T. Ogawa (2001) Genes essential to iron transport in the cyanobacterium Synechocystis sp. strain PCC 6803. J. Bacteriol. 183: 2779–2784.CrossRefGoogle Scholar
  38. 38.
    Zhang, Z., N. D. Pendse, K. N. Phillips, J. B. Cotner, and A. Khodursky (2008) Gene expression patterns of sulfur starvation in Synechocystis sp. PCC 6803. BMC Genom. 9: 344.CrossRefGoogle Scholar
  39. 39.
    Asada, K. (1994) Production and action of active oxygen species in photosynthetic tissues. pp. 77–104. In: Foyer, C. H. and P. M. Mullineaux (eds.). Causes of Photooxidative stress and Amelioration of Defense Systems in Plants. CRC Press.Google Scholar
  40. 40.
    Cooley, J. W., C. A. Howitt, and W. F. Vermaas (2000) Succinate: quinol oxidoreductases in the cyanobacterium Synechocystis sp. strain PCC 6803: Presence and function in metabolism and electron transport. J. Bacteriol. 182: 714–722.CrossRefGoogle Scholar
  41. 41.
    Silva, P., Y. J. Choi, H. A. Hassan, and P. J. Nixon (2002) Involvement of the HtrA family of proteases in the protection of the cyanobacterium Synechocystis PCC 6803 from light stress and in the repair of photosystem II. Philos. Trans. R Soc. Lond. B Biol. Sci. 357: 1461–1467.CrossRefGoogle Scholar
  42. 42.
    Allakhverdiev, S. I. and N. Murata (2004) Environmental stress inhibits the synthesis de novo of proteins involved in the photodamage-repair cycle of Photosystem II in Synechocystis sp. PCC 6803. Biochim. Biophys. Acta-Bioenerg 1657: 23–32.CrossRefGoogle Scholar
  43. 43.
    Gombos, Z., H. Wada, and N. Murata (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low-temperature photoinhibition. Proc. Natl. Acad. Sci. U. S. A. 89: 9959–9963.CrossRefGoogle Scholar
  44. 44.
    Taylor, A. O. and J. A. Rowley (1971) Plants under climatic stress: I. Low temperature, high light effects on photosynthesis. Plant Physiol. 47: 713–718.CrossRefGoogle Scholar
  45. 45.
    Aro, E. M., I. Virgin, and B. Andersson (1993) Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143: 113–134.CrossRefGoogle Scholar
  46. 46.
    Barker, M., R. De Vries, J. Nield, J. Komenda, and P. J. Nixon (2006) The Deg proteases protect Synechocystis sp. PCC 6803 during heat and light stresses but are not essential for removal of damaged D1 protein during the photosystem two repair cycle. J. Biol. Chem. 281: 30347–30355.CrossRefGoogle Scholar
  47. 47.
    Appel, J., S. Phunpruch, K. Steinmuller, and R. Schulz (2000) The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis. Arch. Microbiol. 173: 333–338.CrossRefGoogle Scholar
  48. 48.
    Schmitz, O., G. Boison, H. Salzmann, H. Bothe, K. Schutz, S. H. Wang, and T. Happe (2002) HoxE — a subunit specific for the pentameric bidirectional hydrogenase complex (HoxEFUYH) of cyanobacteria. Biochim. Biophys. Acta-Bioenerg 1554: 66–74.CrossRefGoogle Scholar
  49. 49.
    Singh, A. K. and L. A. Sherman (2005) Pleiotropic effect of a histidine kinase on carbohydrate metabolism in Synechocystis sp. strain PCC 6803 and its requirement for heterotrophic growth. J. Bacteriol. 187: 2368–2376.CrossRefGoogle Scholar
  50. 50.
    Eisenhut, M., S. Kahlon, D. Hasse, R. Ewald, J. Lieman-Hurwitz, T. Ogawa, W. Ruth, H. Bauwe, A. Kaplan, and M. Hagemann (2006) The plant-like C2 glycolate cycle and the bacterial-like glycerate pathway cooperate in phosphoglycolate metabolism in cyanobacteria. Plant Physiol. 142: 333–342.CrossRefGoogle Scholar
  51. 51.
    Takahashi, S., H. Bauwe, and M. Badger (2007) Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis. Plant Physiol. 144: 487–494.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Seong-Joo Hong
    • 1
  • HyoJin Kim
    • 2
  • Jin Hee Jang
    • 1
  • Byung-Kwan Cho
    • 3
  • Hyung-Kyoon Choi
    • 4
  • Hookeun Lee
    • 2
    • 5
  • Choul-Gyun Lee
    • 1
  1. 1.Marine Bioenergy Research Center, Department of Biological EngineeringInha UniversityIncheonKorea
  2. 2.Institute of Pharmaceutical Research, College of PharmacyGachon UniversityIncheonKorea
  3. 3.Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonKorea
  4. 4.College of PharmacyChung-Ang UniversitySeoulKorea
  5. 5.Gachon Medical Research InstituteGil Medical CenterIncheonKorea

Personalised recommendations