Skip to main content
Log in

Covalent modification of cellulosic-based textiles: A new strategy to obtain antimicrobial properties

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In the past years the textile industry has witnessed new advances in the area of textile fiber chains engineering, which allow the modification of the structure of such chains so as to produce polymers responsive to changes in the environment, thus capable of attaching to cells and bioactive molecules. On the other hand, following our society’s trend towards higher hygiene standards, the research and development of antimicrobial textiles has shown a remarkable increase. Applications of such textiles can nowadays be found in underwear, sportswear, home furnishing, protective clothing, wound-dressings and in microbial infection high risk settings, such as health care institutions. The present research aims at the development of a strong, durable and washable antimicrobial L-Cysteine (L-Cys)-functionalized cotton by means of a covalent mechanism. The covalent binding of L-Cys onto cellulosic fibers was assessed by Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS) and Fourier Transform Infrared Spectroscopy (FTIR) analysis. Antimicrobial assays showed that the functionalized cotton yielded strong microbial killing rates, exhibiting inhibition ratios of 89 and 83% against K. pneumoniae and S. aureus, respectively. These results demonstrate the effectiveness of the covalent modification of cotton fabrics with L-Cys adding antimicrobial properties to cotton fibers and thus open the door to a world of applications in the area of increased risk microbial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. Fischbach, L. A., K. J. Goodman, M. Feldman, and C. Aragaki (2002) Sources of variation of Helicobacter pylori treatment success in adults worldwide: A meta-analysis. Internat. J. Epidemiol. 31: 128–139.

    Article  Google Scholar 

  2. Gao, Y. and R. Cranston (2008) Recent advances in antimicrobial treatments of textiles. Text. Res. J. 78: 68–72.

    Google Scholar 

  3. Kramer, A., P. Guggenbichler, P. Heldt, M. Junger, A. Ladwig, and H. Thierbach (2006) Hygienic relevance and risk assessment of antimicrobial-impregnated textiles. Curr. Prob. Dermatol. 33: 78–109.

    Article  CAS  Google Scholar 

  4. Son, Y., S. Kim, K. Ravikumara, and S. G. Lee (2006) Imparting durable antimicrobial properties to cotton fabrics using quaternary ammonium salts through 4-aminobenzenesulfonic acid-chloro-triazine adduct. Eur. Polymer J. 42: 3059–3067.

    Article  CAS  Google Scholar 

  5. Sun, Y. Z. C. and M. Braun (2005) Preparation and physical and antimicrobial properties of a cellulose-supported chloromelamine derivative. Ind. Eng. Chem. Res. 44: 7916–7920.

    Article  CAS  Google Scholar 

  6. Luis Cabrales, N. A., A. Hammond, and A. Hamood (2012) Cotton fabric functionalization with cyclodextrins. J. Mater. Environ. Sci. 3: 561–574.

    Google Scholar 

  7. Khaled, F. El-tahlawy MAE-b, A. G. Elhendawy, and S. M. Hudson (2005) The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohyd. Polym. 60: 421–430.

    Article  Google Scholar 

  8. Chun, D. T. W. and G. R. Gamble (2007) Using the reactive dye method to covalently attach antibacterial compounds to cotton. J. Cotton Sci. 11: 154–158.

    CAS  Google Scholar 

  9. Gashti, M. P., J. Willoughby, and P. Agrawal (2011) Surface and bulk odification of synthetic textiles to improve dyeability. In: {roProf.} Peter Hauser (ed.). Textile Dyeing. ISBN: 978-953-307-565-5, InTech, DOI: 10.5772/18706.

    Google Scholar 

  10. Caldeira, E., E. Piskin, L. Granadeiro, F. Silva, and I. C. Gouveia (2013) Biofunctionalization of cellulosic fibres with l-cysteine: Assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiella pneumoniae. J. Biotechnol. 168: 426–435.

    Article  CAS  Google Scholar 

  11. Isabel, C. G., D. Sa, and M. Henriques (2012) Functionalization of Wool with L-Cysteine: Process characterization and assessment of antimicrobial activity and cytotoxicity. J. Appl. Polymer Sci. 124: 1352–1358.

    Article  Google Scholar 

  12. Ratner, B. (2004) Biomaterials Science An Introduction to Materials in Medicine. 2nd ed., Elsevier Academic Press, London, UK.

    Google Scholar 

  13. Vigo, T. (2001) Antimicrobial polymers and fibers: Retrospective and prospective. Bioactive fibers and polymers. Am. Chem. Soc. 11: 175–200.

    Google Scholar 

  14. Selvam, S. and M. Sundrarajam (2012) Functionalization of cotton fabric with PVP/ZnO nanoparticles for improved reactive dyeability and antibacterial activity. Carbohyd. Poly. 2: 1419–1424.

    Article  Google Scholar 

  15. Socrates, G. (2004) Infrared and Raman Characteristic Group Frequencies: Tables and Charts. John Wiley & Sons, UK.

    Google Scholar 

  16. Morris, S. L., R. C. Walsh, and J. N. Hansen (1984) Identification and characterization of some bacterial membrane sulfhydryl groups which are targets of bacteriostatic and antibiotic action. J. Biol. Chem. 259: 13590–13594.

    CAS  Google Scholar 

  17. Greg, T. (2008) Hermanson. Bioconjugate Techniques. 2nd ed., Academic Press Inc.

    Google Scholar 

  18. Kim, Y. H., C. W. Nam, J. W. Choi, and J. H. Jang (2003) Durable antimicrobial treatment of cotton fabrics using N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride and polycarboxylic acids. J. Appl. Polymer Sci. 88: 1567–1572.

    Article  CAS  Google Scholar 

  19. Cottell, A., S. P. Denyer, G. W. Hanlon, D. Ochs, and J. Y. Maillard (2009) Triclosan-tolerant bacteria: Changes in susceptibility to antibiotics. J. Hosp. Infection. 72: 71–76.

    Article  CAS  Google Scholar 

  20. Martins, M. C. L., S. A. Curtin, S. C. Freitas, P. Salgueiro, B. D. Ratner, and M. A. Barbosa (2009) Molecularly designed surfaces for blood deheparinization using an immobilized heparin-binding peptide. J. Biomed. Mat. Res. Part A. 88: 162–173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Gouveia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nogueira, F., Vaz, J., Mouro, C. et al. Covalent modification of cellulosic-based textiles: A new strategy to obtain antimicrobial properties. Biotechnol Bioproc E 19, 526–533 (2014). https://doi.org/10.1007/s12257-013-0498-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0498-7

Keywords

Navigation