Skip to main content
Log in

Neutralizing bacterial spores using halogenated energetic reactions

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The fight against biological warfare has prompted investigation of the chemistry and exothermic energy from energetic material reactions as a means for the neutralization of bacterial spores. The interaction between energetic reactions containing biocides and spore forming bacteria is not well understood. The goal of this work is to fundamentally examine the mechanisms of neutralization for Bacillus thuringiensis utilizing a halogenated energetic material reaction. Spore neutralization is attributed to a thermal effect from the reaction heat and the associated chemical influence of the halogen gas (i.e., produced from combustion). Results show heat transfer in the spore enhances the effectiveness of the halogen gas in the neutralization process and that elevated temperatures increase spore permeability, facilitating gas penetration and accelerating spore neutralization. Based on experimental results, a mathematical model was developed to predict spore behavior during reaction exposure over varying time scales. In the millisecond range, the model showed that the coupled thermal-biocidal gas mechanism will require elevated temperatures of 360°C to produce 80% neutralization in tens of milliseconds while thermal conditions alone would require nearly 1,000°C for the same neutralization. These results provide molecular-level insights into the components underpinning biological processes leading to spore neutralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inglesby, T. V., D. A. Henderson, J. G. Bartlett, M. S. Ascher, E. Eitzen, A. M. Friedlander, J. Hauer, J. McDade, M. T. Osterholm, T. O’Toole, G. Parker, T. M. Perl, P. K. Russell, and K. Tonat (1999) Anthrax as a biological weapon: Medical and public health management. Working group on civilian biodefense. JAMA 281: 1735–1745.

    Article  CAS  Google Scholar 

  2. Kournikakis, B., K. F. Martinez, R. E. McCleery, S. V. Shadomy, and G. Ramos (2011) Anthrax letters in an open office environment: Effects of selected CDC response guidelines on personal exposure and building contamination. J. Occup. Environ. Hyg. 8: 113–122.

    Article  CAS  Google Scholar 

  3. Kida, N., Y. Mochizuki, and F. Taguchi (2004) An effective iodide formulation for killing Bacillus and Geobacillus spores over a wide temperature range. J. Appl. Microbiol. 97: 402–409.

    Article  CAS  Google Scholar 

  4. Clery-Barraud, C., A. Gaubert, P. Masson, and D. Vidal (2004) Combined effects of high hydrostatic pressure and temperature for inactivation of Bacillus anthracis spores. Appl. Environ. Microbiol. 70: 635–637.

    Article  CAS  Google Scholar 

  5. Clark, B. R. and M. L. Pantoya (2010) The aluminium and iodine pentoxide reaction for the destruction of spore forming bacteria. Phys. Chem. Chem. Phys. 12: 12653–12657.

    Article  CAS  Google Scholar 

  6. Rice, E. W., N. J. Adcock, M. Sivaganesan, and L. J. Rose (2005) Inactivation of spores of Bacillus anthracis Sterne, Bacillus cereus, and Bacillus thuringiensis subsp. israelensis by chlorination. Appl. Environ. Microbiol. 71: 5587–5589.

    Article  CAS  Google Scholar 

  7. Mullican, C. L., L. M. Buchanan, and R. K. Hoffman (1971) Thermal inactivation of aerosolized Bacillus subtilis var. niger spores. Appl. Environ. Microbiol. 22: 557–559.

    CAS  Google Scholar 

  8. Alexander, C. A., J. S. Ogden, M. A. LeVere, C. F. Dye, and D. F. Kohler (1998) Thermal deactivation of aerosolized bacteria. Defense Threat Reduction Agency, Technical Report.

    Google Scholar 

  9. Bazyn, T., N. Glumac, H. Krier, T. S. Ward, M. Schoenitz, and E. L. Dreizin (2007) Reflected shock ignition and combustion of aluminum and nanocomposite thermite powders. Combustion Sci. Technol. 179: 457–476.

    Article  CAS  Google Scholar 

  10. David, J. R. D. and R. L. Merson (1990) Kinetic-parameters for inactivation of Bacillus-Stearothermophilus at high-temperatures. J. Food Sci. 55: 488–493.

    Article  Google Scholar 

  11. Jung, J. H., J. E. Lee, C. H. Lee, S. S. Kim, and B. U. Lee (2009) Treatment of fungal bioaerosols by a high-temperature, shorttime process in a continuous-flow system. Appl. Environ. Microbiol. 75: 2742–2749.

    Article  CAS  Google Scholar 

  12. Lee, Y. H. and B. U. Lee (2006) Inactivation of airborne E. coli and B. subtilis bioaerosols utilizing thermal energy. J. Microbiol. Biotechnol. 16: 1684–1689.

    CAS  Google Scholar 

  13. Bloomfield, S. F. and M. Arthur (1994) Mechanisms of inactivation and resistance of spores to chemical biocides. J. Appl. Bacteriol. 76: 91–104.

    Article  Google Scholar 

  14. McDonnell, G. and A. D. Russell (1999) Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 12: 147–179.

    CAS  Google Scholar 

  15. Setlow, P. (1995) Mechanisms for the prevention of damage to DNA in spores of Bacillus species. Annu. Rev. Microbiol. 49: 29–54.

    Article  CAS  Google Scholar 

  16. Miyata, S., S. Kozuka, Y. Yasuda, Y. Chen, R. Moriyama, K. Tochikubo, and S. Makino (1997) Localization of germinationspecific spore-lytic enzymes in Clostridium perfringens S40 spores detected by immunoelectron microscopy. FEMS Microbiol. Lett. 152: 243–247.

    Article  CAS  Google Scholar 

  17. Tennen, R., B. Setlow, K. L. Davis, C. A. Loshon, and P. Setlow (2000) Mechanisms of killing of spores of Bacillus subtilis by iodine, glutaraldehyde and nitrous acid. J. Appl. Microbiol. 89: 330–338.

    Article  CAS  Google Scholar 

  18. Setlow, P. (2005) Spores of Bacillus subtilis: Their reistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101: 514–525.

    Article  Google Scholar 

  19. Hoffman, R. K., V. M. Gambill, and L. M. Buchanan (1968) Effect of cell moisture on the thermal inactivation rate of bacterial spores. Appl. Environ. Microbiol. 16: 1240–1244.

    CAS  Google Scholar 

  20. Drummond, D. W. and I. J. Pflug (1970) Dry-heat destruction of Bacillus subtilis spores on surfaces: Effect of humidity in an open system. Appl. Environ. Microbiol. 20: 805–809.

    CAS  Google Scholar 

  21. Russell, A. D. (1996) Activity of biocides against mycobacteria. Soc. Appl. Bacteriol. Symp. Ser. 25: 87–101.

    Article  Google Scholar 

  22. Larson, M. A. and B. J. Marinas (2003) Inactivation of Bacillus subtilis spores with ozone and monochloramine. Water Res. 37: 833–844.

    Article  CAS  Google Scholar 

  23. Corona-Vasquez, B., A. Samuelson, J. L. Rennecker, and B. J. Marinas (2002) Inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine. Water Res. 36: 4053–4063.

    Article  CAS  Google Scholar 

  24. Fernando, W. J. and R. Othman (2006) Relevance of diffusion through bacterial spore coats/membranes and the associated concentration boundary layers in the initial lag phase of inactivation: A case study for Bacillus subtilis with ozone and monochloramine. Math. Biosci. 199: 175–187.

    Article  CAS  Google Scholar 

  25. Watson, H. E. (1908) A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. J. Hyg. 8: 536–542.

    Article  CAS  Google Scholar 

  26. Russell, A. D. (1998) Mechanisms of bacterial resistance to antibiotics and biocides. Prog. Med. Chem. 35: 133–197.

    Article  CAS  Google Scholar 

  27. Gerhardt, P., H. Pankratz, and R. Scherrer (1976) Fine structure of the Bacillus thuringiensis spore. Appl. Environ. Microbiol. 32: 438–440.

    CAS  Google Scholar 

  28. Kaviany, M. (1995) Principles of Heat Transfer in Porous Media. Springer-Verlag, NY, USA.

    Book  Google Scholar 

  29. Tommasi, E. D., I. Rea, I. Rendina, L. Rotiroti, and L. D. Stefano (2009) Protein conformational changes revealed by optical spectroscopic reflectometry in porous silicon multilayers. J. Phys. Condens Matter 21: 035115.

    Article  Google Scholar 

  30. Heremans, K. and L. Smeller (1998) Protein structure and dynamics at high pressure. Biochim. Biophys. Acta 1386: 353–370.

    Article  CAS  Google Scholar 

  31. Tilton, R. F. Jr., J. C. Dewan, and G. A. Petsko (1992) Effects of temperature on protein structure and dynamics: X-ray crystallographic studies of the protein ribonuclease-A at nine different temperatures from 98 to 320 K. Biochem. 31: 2469–2681.

    Article  CAS  Google Scholar 

  32. Serway, R. A. and J. W. Jewett (2004) Physics for Scientists and Engineers. Cengage Learning.

    Google Scholar 

  33. Rodgers, L. J. N. (1988) Thirteen ways to look at the correlation coeffecient. The American Statistician 42: 59–66.

    Article  Google Scholar 

  34. Stigler, M. S. (1989) Francis galton’s account of the invention of correlation. Statistic. Sci. 4: 73–79.

    Article  Google Scholar 

  35. Farley, C. and M. Pantoya (2010) Reaction kinetics of nanometric aluminum and iodine pentoxide. J. Thermal Anal. Calorimetry 102: 609–613.

    Article  CAS  Google Scholar 

  36. Zhang, S., M. Schoenitz, and E. L. Dreizin (2010) Iodine release, oxidation, and ignition of mechanically alloyed AlI Composites. J. Physical Chem. C 114: 19653–19659.

    Article  CAS  Google Scholar 

  37. Zhang, S., C. Badiola, M. Schoenitz, and E. L. Dreizin (2012) Oxidation, ignition, and combustion of AlI2 composite powders. Combustion and Flame 159: 1980–1986.

    Article  CAS  Google Scholar 

  38. Sullivan, K. T., N. W. Piekiel, S. Chowdhury, C. Wu, M. R. Zachariah, and C. E. Johnson (2010) Ignition and combustion characteristics of nanoscale Al/AgIO3: A potential energetic biocidal system. Combustion Sci. Technol. 183: 285–302.

    Article  Google Scholar 

  39. Glumac, N., H. Krier, T. Bazyn, and R. Eyer (2005) Temperature measurements of aluminum particles burning in carbon dioxide. Combustion Sci. Technol. 177: 485–511.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Pantoya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mulamba, O., Hunt, E.M. & Pantoya, M.L. Neutralizing bacterial spores using halogenated energetic reactions. Biotechnol Bioproc E 18, 918–925 (2013). https://doi.org/10.1007/s12257-013-0323-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0323-3

Keywords

Navigation