Skip to main content
Log in

Streamlined cell-free protein synthesis from sequence information

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, we describe a cell-free protein synthesis consolidated with polymerase chain reaction (PCR)-based synthetic gene assembly that allows for streamlined translation of genetic information. In silico-designed fragments of target genes were PCR-assembled and directly expressed in a cell-free synthesis system to generate functional proteins. This method bypasses the procedures required in conventional cell-based gene expression methods, integrates gene synthesis and cell-free protein synthesis, shortens the time to protein production, and allows for facile regulation of gene expression by manipulating the oligomer sequences used for gene synthesis. The strategy proposed herein expands the flexibility and throughput of the protein synthesis process, a fundamental component in the construction of synthetic biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tan, C., P. Marguet, and L. You (2009) Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5: 842–848.

    Article  CAS  Google Scholar 

  2. Kwok, R. (2010) Five hard truth for synthetic biology. Nature 463: 288–290.

    Article  CAS  Google Scholar 

  3. Seo, S. W., S. C. Kim, and G. Y. Jung (2012) Synthetic regulatory tools for microbial engineering. Biotechnol. Bioproc. Eng. 17: 1–7.

    Article  CAS  Google Scholar 

  4. Carlson, R. (2009) The changing economics of DNA synthesis. Nat. Biotechnol. 27: 1091–1094.

    Article  CAS  Google Scholar 

  5. Tian, J., H. Gong, N. Sheng, X. Zhou, E. Gulari, X. Gao, and G. Church (2004) Accurate multiplex gene synthesis from programmable DNA microchips. Nature 432: 1050–1054.

    Article  CAS  Google Scholar 

  6. Leprince, A., M. W. van Passel, and V. A. dos Santos (2012) Streamlining genomes: Toward the generation of simplified and stabilized microbial systems. Curr. Opin. Biotechnol. 23: 651–658.

    Article  CAS  Google Scholar 

  7. Matzas, M., P. F. Stahler, N. Kefer, N. Siebelt, V. Boisguerin, J. T. Leonard, A. Keller, C. F. Stahler, P. Haberle, B. Gharizadeh, F. Babrzadeh, and G. M. Church (2010) High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing. Nat. Biotechnol. 28: 1291–1294.

    Article  CAS  Google Scholar 

  8. Pennisi, E. (2010) Genomics. Synthetic genome brings new life to bacterium. Sci. 328: 958–959.

    Article  CAS  Google Scholar 

  9. Ahn, J. H., H. S. Chu, T. W. Kim, I. S. Oh, C. Y. Choi, G. H. Hahn, C. G. Park, and D. M. Kim (2005) Cell-free synthesis of recombinant proteins from PCR-amplified genes at a comparable productivity to that of plasmid-based reactions. Biochem. Biophys. Res. Commun. 338: 1346–1352.

    Article  CAS  Google Scholar 

  10. Kim, H. C., Y. C. Kwon, K. H. Lee, and D. M. Kim (2011) Multihour translation of mRNA in a cell-free system. Biotechnol. Bioproc. Eng. 6: 1152–1156.

    Article  Google Scholar 

  11. Richardson, S. M., S. J. Wheelan, R. M. Yarrington, and J. D. Boeke (2006) GeneDesign: Rapid, automated design of multikilobase synthetic genes. Genome Res. 16: 550–556.

    Article  CAS  Google Scholar 

  12. Stemmer, W. P., A. Crameri, K. D. Ha, T. M. Brennan, and H. L. Heyneker (1995) Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164: 49–53.

    Article  CAS  Google Scholar 

  13. Kim, D. M., T. Kigawa, C. Y. Choi, and S. Yokoyama (1996) A highly efficient cell-free protein synthesis system from Escherichia coli. Eur. J. Biochem. 239: 881–886.

    Article  CAS  Google Scholar 

  14. Johe, K. K., T. G. Hazel, T. Muller, M. M. Dugich-Djordjevic, and R. D. McKay (1996) Single factors direct the differentiation of stem cells from the fetal and adult central nervous system. Genes Dev. 10: 3129–3140.

    Article  CAS  Google Scholar 

  15. Ahn, J. H., M. Y. Hwang, K. H. Lee, C. Y. Choi, and D. M. Kim (2007) Use of signal sequences as an in situ removable sequence element to stimulate protein synthesis in cell-free extracts. Nucleic Acids Res. 35: e21.

    Article  Google Scholar 

  16. Son, J. M., J. H. Ahn, M. Y. Hwang, C. G. Park, C. Y. Choi, and D. M. Kim (2006) Enhancing the efficiency of cell-free protein synthesis through the polymerase-chain-reaction-based addition of a translation enhancer sequence and the in situ removal of the extra amino acid residues. Anal. Biochem. 351: 187–192.

    Article  CAS  Google Scholar 

  17. Isaacs, F. J., D. J. Dwyer, and J. J. Collins (2006) RNA synthetic biology. Nat. Biotechnol. 24: 545–554.

    Article  CAS  Google Scholar 

  18. Mukherji, S. and A. van Oudenaarden (2009) Synthetic biology: Understanding biological design from synthetic circuits. Nat. Rev. Genet. 10: 859–871.

    CAS  Google Scholar 

  19. Pfleger, B. F., D. J. Pitera, C. D. Smolke, and J. D. Keasling (2006) Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes. Nat. Biotechnol. 24: 1027–1032.

    Article  CAS  Google Scholar 

  20. Keum, J. W., J. H. Ahn, T. J. Kang, and D. M. Kim (2009) Combinatorial, selective and reversible control of gene expression using oligodeoxynucleotides in a cell-free protein synthesis system. Biotechnol. Bioeng. 102: 577–582.

    Article  CAS  Google Scholar 

  21. Dias, N. and C. A. Stein (2002) Antisense oligonucleotides: Basic concepts and mechanisms. Mol. Cancer Ther. 1: 347–355.

    CAS  Google Scholar 

  22. Lee, L. K. and C. M. Roth (2003) Antisense technology in molecular and cellular bioengineering. Curr. Opin. Biotechnol. 14: 505–511.

    Article  CAS  Google Scholar 

  23. Shao, Y., Y. Wu, C. Y. Chan, K. McDonough, and Y. Ding (2006) Rational design and rapid screening of antisense oligonucleotides for prokaryotic gene modulation. Nucleic Acids Res. 34: 5660–5669.

    Article  CAS  Google Scholar 

  24. Ahn, J. H., T. J. Kang, and D. M. Kim (2008) Tuning the expression level of recombinant proteins by modulating mRNA stability in a cell-free protein synthesis system. Biotechnol. Bioeng. 101: 422–427.

    Article  CAS  Google Scholar 

  25. Stenstrom, C. M., E. Holmgren, and L. A. Isaksson (2001) Cooperative effects by the initiation codon and its flanking regions on translation initiation. Gene 273: 259–265.

    Article  CAS  Google Scholar 

  26. Stenstrom, C. M., H. N. Jin, L. L. Major, W. P. Tate, and L. A. Isaksson (2001) Codon bias at the 3′-side of the initiation codon is correlated with translation initiation efficiency in Escherichia coli. Gene 263: 273–284.

    Article  CAS  Google Scholar 

  27. Kim, D. M., J. H. Ahn, M. Y. Hwang, C. G. Park, C. Y. Choi, and D. M. Kim (2006) Enhancing the efficiency of cell-free protein synthesis through the polymerase-chain-reaction-based addition of a translation enhancer sequence and the in situ removal of the extra amino acid residues. Anal. Biochem. 351: 187–192.

    Article  Google Scholar 

  28. Ahn, J. H., J. W. Keum, and D. M. Kim (2008) High-throughput, combinatorial engineering of initial codons for tunable expression of recombinant proteins. J. Proteome Res. 7: 2107–2113.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Myung Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, JH., Lee, KH., Shim, JW. et al. Streamlined cell-free protein synthesis from sequence information. Biotechnol Bioproc E 18, 1101–1108 (2013). https://doi.org/10.1007/s12257-013-0303-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0303-7

Keywords

Navigation