Skip to main content
Log in

Various seeding methods for tissue development of human umbilical-cord-derived mesenchymal stem cells in 3-dimensional PET matrix

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells derived from human umbilical cords (hUCMSCs) are attractive as a new cell source for tissue engineering. It is essential to investigate and optimize the seeding process of these cells for the success of cell culture and tissue regeneration in vitro. In this study, a static seeding method (SSM), a centrifugal seeding method (CSM), and a novel method-cycling filtration seeding method (CFSM) are evaluated in terms of seeding efficiency, cell damage, and distribution inside the scaffolds, cell proliferation, and osteogenic differentiation. Cells were seeded on three-dimensional (3-D) nonwoven PET discs at a density of 1×104 cells/disc, followed by 21 days of cell culture and 20 days of osteogenic differentiation. Cells grown in 3-D conditions exhibited higher metabolic activity than those grown on a 2-D control surface. The CSM and CFSM groups showed higher seeding efficiency, proliferation capacity, and differentiation potential. H&E staining indicated a more uniform spatial distribution of cells in CFSM groups. LDH level measurements suggested that more cell damage was caused by the CFSM process. Above all, the results showed that the cells maintained their proliferation ability and differentiation potential ex vivo during approximately 7 weeks of culture. The CSM and CFSM are recommended for hUCMSC tissue engineering, although the seeding parameters still require further investigation and optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barry, F. and J. Murphy (2004) Mesenchymal stem cells: Clinical applications and biological characterization. Int. J. Biochem. Cell B. 36: 568–584.

    Article  CAS  Google Scholar 

  2. Caplan, A. (2010) Mesenchymal stem cells: The past, the present, the future. Cartilage. 1: 6–9.

    Article  Google Scholar 

  3. Deans, R. and A. Moseley (2000) Mesenchymal stem cells: Biology and potential clinical uses. Exp. Hematol. 28: 875–884.

    Article  CAS  Google Scholar 

  4. Mazzini, L., K. Mareschi, I. Ferrero, E. Vassallo, G. Oliveri, R. Boccaletti, L. Testa, S. Livigni, and F. Fagioli (2006) Autologous mesenchymal stem cells: Clinical applications in amyotrophic lateral sclerosis. Neurol. Res. 28: 523–526.

    Article  Google Scholar 

  5. Pittenger, M. and B. Martin (2004) Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95: 9–20.

    Article  CAS  Google Scholar 

  6. Karahuseyinoglu, S., O. Cinar, E. Kilic, F. Kara, G. Akay, D. Demiralp, A. Tukun, D. Uckan, and A. Can (2007) Biology of stem cells in human umbilical cord stroma: In situ and in vitro surveys. Stem Cells. 25: 319–331.

    Article  CAS  Google Scholar 

  7. Minguell, J., A. Erices, and P. Conget (2001) Mesenchymal stem cells. Exp. Biol. Med. (Maywood). 226: 507–520.

    CAS  Google Scholar 

  8. Jiang, Y., B. Jahagirdar, R. Reinhardt, R. Schwartz, C. Keene, X. Ortiz-Gonzalez, M. Reyes, T. Lenvik, T. Lund, and M. Blackstad (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41–49.

    Article  CAS  Google Scholar 

  9. Pittenger, M., A. Mackay, S. Beck, R. Jaiswal, R. Douglas, J. Mosca, M. Moorman, D. Simonetti, S. Craig, and D. Marshak (1999) Multilineage potential of adult human mesenchymal stem cells. Sci. 284: 143–147.

    Article  CAS  Google Scholar 

  10. Aggarwal, S. and M. Pittenger (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105: 1815–1822.

    Article  CAS  Google Scholar 

  11. Le Blanc, K. (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy. 5: 485–489.

    Article  Google Scholar 

  12. Le Blanc, K., I. Rasmusson, B. Sundberg, C. Götherström, M. Hassan, M. Uzunel, and O. Ringdén (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. The Lancet. 363: 1439–1441.

    Article  Google Scholar 

  13. Baksh, D., R. Yao, and R. Tuan (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells 25: 1384–1392.

    Article  CAS  Google Scholar 

  14. Eblenkamp, M., J. Aigner, J. Hintermair, S. Potthoff, U. Hopfner, V. Jacobs, M. Niemeyer, and E. Wintermantel (2004) Umbilical Cord Stromal Cells (UCSC). Der Orthopäde. 33: 1338–1345.

    Article  CAS  Google Scholar 

  15. Romanov, Y., V. Svintsitskaya, and V. Smirnov (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC like cells from umbilical cord. Stem Cells 21: 105–110.

    Article  Google Scholar 

  16. Sarugaser, R., D. Lickorish, D. Baksh, M. Hosseini, and J. Davies (2005) Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors. Stem Cells 23: 220–229.

    Article  Google Scholar 

  17. Wang, H., S. Hung, S. Peng, C. Huang, H. Wei, Y. Guo, Y. Fu, M. Lai, and C. Chen (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22: 1330–1337.

    Article  Google Scholar 

  18. Takahashi, Y. and Y. Tabata (2003) Homogeneous seeding of mesenchymal stem cells into non woven fabric for tissue engineering. Tissue Eng. 9: 931–938.

    Article  CAS  Google Scholar 

  19. Grayson, W., T. Ma, and B. Bunnell (2004) Human mesenchymal stem cells tissue development in 3D PET matrices. Biotechnol. Progr. 20: 905–912.

    Article  CAS  Google Scholar 

  20. Awad, H., D. Butler, M. Harris, R. Ibrahim, Y. Wu, R. Young, S. Kadiyala, and G. Boivin (2000) In vitro characterization of mesenchymal stem cell-seeded collagen scaffolds for tendon repair: Effects of initial seeding density on contraction kinetics. J. Biomed. Mater. Res. Part A. 51: 233–240.

    Article  CAS  Google Scholar 

  21. Braccini, A., D. Wendt, C. Jaquiery, M. Jakob, M. Heberer, L. Kenins, A. Wodnar Filipowicz, R. Quarto, and I. Martin (2005) Three dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts. Stem Cells 23: 1066–1072.

    Article  Google Scholar 

  22. Xie, Y., P. Hardouin, Z. Zhu, T. Tang, K. Dai, and J. Lu (2006) Three-dimensional flow perfusion culture system for stem cell proliferation inside the critical-size β-tricalcium phosphate scaffold. Tissue Eng. 12: 3535–3543.

    Article  CAS  Google Scholar 

  23. Li, Y., T. Ma, D. Kniss, L. Lasky, and S. Yang (2001) Effects of filtration seeding on cell density, spatial distribution, and proliferation in nonwoven fibrous matrices. Biotechnol. Progr. 17: 935–944.

    Article  CAS  Google Scholar 

  24. Kim, B., A. Putnam, T. Kulik, and D. Mooney (1998) Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices. Biotechnol. Bioeng. 57: 46–54.

    Article  CAS  Google Scholar 

  25. Burg, K., W. Holder Jr, C. Culberson, R. Beiler, K. Greene, A. Loebsack, W. Roland, P. Eiselt, D. Mooney, and C. Halberstadt (2000) Comparative study of seeding methods for three-dimensional polymeric scaffolds. J. Biomed. Mater. Res. Part A. 51: 642–649.

    Article  CAS  Google Scholar 

  26. Vunjak-Novakovic, G., B. Obradovic, I. Martin, P. Bursac, R. Langer, and L. Freed (1998) Dynamic cell seeding of polymer scaffolds for cartilage tissue engineering. Biotechnol. Progr. 14: 193–202.

    Article  CAS  Google Scholar 

  27. Dunkelman, N., M. Zimber, R. LeBaron, R. Pavelec, M. Kwan, and A. Purchio (1995) Cartilage production by rabbit articular chondrocytes on polyglycolic acid scaffolds in a closed bioreactor system. Biotechnol. Bioeng. 46: 299–305.

    Article  CAS  Google Scholar 

  28. Kim, S., C. Sundback, S. Kaihara, M. Benvenuto, B. Kim, D. Mooney, and J. Vacanti (2000) Dynamic seeding and in vitro culture of hepatocytes in a flow perfusion system. Tissue Eng. 6: 39–44.

    Article  CAS  Google Scholar 

  29. Yang, T., H. Miyoshi, and N. Ohshima (2001) Novel cell immobilization method utilizing centrifugal force to achieve high-density hepatocyte culture in porous scaffold. J. Biomed. Mater. Res. Part A. 55: 379–386.

    Article  CAS  Google Scholar 

  30. Ng, R., J. S. Gurm, and S. T. Yang (2010) Centrifugal seeding of mammalian cells in nonwoven fibrous matrices. Biotechnol. Progr. 26: 239–245.

    CAS  Google Scholar 

  31. Koch, M., E. Vrij, E. Engel, J. Planell, and D. Lacroix (2010) Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J. Biomed. Mater. Res. Part A. 95: 1011–1018.

    Article  CAS  Google Scholar 

  32. Noort, W., S. Scherjon, C. Kleijburg-van der Keur, A. Kruisselbrink, R. van Bezooijen, W. Beekhuizen, R. Willemze, H. Kanhai, and W. Fibbe (2003) Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematol. 88: 845–852.

    Google Scholar 

  33. Petrenko, Y. A., R. Ivanov, V. Lozinsky, and A. Y. Petrenko (2011) Comparison of the methods for seeding human bone marrow mesenchymal stem cells to macroporous alginate cryogel carriers. B. Exp. Biol. Med. 150: 543–546.

    Article  Google Scholar 

  34. Tao, G., L. Feng-shan, and S. Hai-ying (2007) Designing a threedimensional perfusion bioreactor system for bone tissue engineering. (In Chinese) Chin. J. Tissue Eng. Res. 11: 3476–3480.

    Google Scholar 

  35. Zhao, F. and T. Ma (2005) Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: Dynamic cell seeding and construct development. Biotechnol. Bioeng. 91: 482–493.

    Article  CAS  Google Scholar 

  36. Bjerre, L., C. Bünger, A. Baatrup, M. Kassem, and T. Mygind (2011) Flow perfusion culture of human mesenchymal stem cells on coralline hydroxyapatite scaffolds with various pore sizes. J. Biomed. Mater. Res A. 97: 251–263.

    Article  Google Scholar 

  37. Penolazzi, L., S. Mazzitelli, R. Vecchiatini, E. Torreggiani, E. Lambertini, S. Johnson, S. F. Badylak, R. Piva, and C. Nastruzzi (2012) Human mesenchymal stem cells seeded on extracellular matrix-scaffold: Viability and osteogenic potential. J. Cell Physiol. 227: 857–866.

    Article  CAS  Google Scholar 

  38. van den Dolder, J., P. H. M. Spauwen, and J. A. Jansen (2003) Evaluation of various seeding techniques for culturing osteogenic cells on titanium fiber mesh. Tissue Eng. 9: 315–325.

    Article  Google Scholar 

  39. Wang, L., K. Seshareddy, M. Weiss, and M. Detamore (2008) Effect of initial seeding density on human umbilical cord mesenchymal stromal cells for fibrocartilage tissue engineering. Tissue Eng. Part A. 15: 1009–1017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yantian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Li, M., Chen, Y. et al. Various seeding methods for tissue development of human umbilical-cord-derived mesenchymal stem cells in 3-dimensional PET matrix. Biotechnol Bioproc E 19, 108–117 (2014). https://doi.org/10.1007/s12257-013-0291-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0291-7

Keywords

Navigation