Skip to main content
Log in

Biogas production and microbial community change during the Co-digestion of food waste with chinese silver grass in a single-stage anaerobic reactor

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Chinese silver grass (CSG), a potential subtropical energy crop, was investigated as a co-substrate to enhance the anaerobic digestion of food waste for municipal solid waste treatment. Results showed that 88.1% of food wastes were degraded using CSG as a co-substrate with 45 days of digestion, where the food waste, CSG, and sludge on VS/TS/working volume was 93.14 g/111.55 g/1 L, in which the average biogas production was at 429.3 L/kg solids, and the average methane content was around 60%. During the digestion, the concentrations of ammonium and free ammonia gradually increased to 1448.2 and 265.2 mg/L respectively, without any significant inhibitory effects on biogas production, which is probably due to the buffering effects of CSG. Microbial community analysis showed that microorganisms from the class of Firmicutes and Bacteroidetes were dominant during digestion, and that the microbial community diversity increased with active methanogenesis, suggesting that the addition of substrates contribute to the increase of microbial diversity, and could be beneficial for biogas production. Therefore, using CSG as a co-substrate in the single-stage food waste anaerobic digestion system is a potential simple method to convert CSG into renewable energy and to simultaneously improve food waste treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. Mata-Alvarez, J., S. Macé, and P. Llabrés (2000) Anaerobic digestion of organic solid wastes. An over view of research achievements and perspectives. Bioresour. Technol. 74: 3–16.

    Article  CAS  Google Scholar 

  2. Cheng, H. and Y. Hu (2010) Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresour. Technol. 101: 3816–3824.

    Article  CAS  Google Scholar 

  3. Zhang, D. Q., S. K. Tan, and R. M. Gersberg (2010) Municipal solid waste management in China: Status, problems and challenges. J. Environ. Manage. 91: 1623–1633.

    Article  CAS  Google Scholar 

  4. Kjeldsen, P., M. A. Barlaz, A. P. Rooker, A. Baun, A. Ledin, and T. H. Christensen (2002) Presentand long-term composition of MSW landfill leachate: A review. Crit. Rev. Env. Sci. Technol. 32: 297–336.

    Article  CAS  Google Scholar 

  5. Kastner, V., W. Somitsch, and W. Schnitzhofer (2012) The anaerobic fermentation of food waste: A comparison of two bioreactor systems. J. Clean. Prod. 34: 82–90.

    Article  CAS  Google Scholar 

  6. Tawfik, A., A. Salem, and M. El-Qelish (2011) Two stage anaerobic baffled reactors for bio-hydrogen production from municipal food waste. Bioresour. Technol. 102: 8723–8726.

    Article  CAS  Google Scholar 

  7. Trzcinski, A. P. and D. C. Stuckey (2011) Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste. Waste Manage. 31: 1480–1487.

    Article  CAS  Google Scholar 

  8. Forster-Carneiro, T., M. Pérez, and L. I. Romero (2008) Anaerobic digestion of municipal solid wastes: Dry thermophilic performance. Bioresour. Technol. 99: 8180–8184.

    Article  CAS  Google Scholar 

  9. Bouallagui, H., Y. Touhami, R. Ben Cheikh, and M. Hamdi (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Proc. Biochem. 40: 989–995.

    Article  CAS  Google Scholar 

  10. Heo, N. H., S. C. Park, and H. Kang (2004) Effects of mixture ratio and hydraulic retention time on single-stage anaerobic codigestion of food waste and waste activated sludge. J. Environ. Sci. Health. Part A. 39: 1739–1756.

    Article  Google Scholar 

  11. Angelidaki, I. and B. K. Ahring (1993) Thermophilic anaerobic digestion of livestock waste: The effect of ammonia. Appl. Microbiol. Biot. 38: 560–564.

    Article  CAS  Google Scholar 

  12. Chen, Y., J. J. Cheng, and K. S. Creamer (2008) Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 99: 4044–4064.

    Article  CAS  Google Scholar 

  13. El-Mashad, H. M., J. A. McGarvey, and R. Zhang (2008) Performance and microbial analysis of anaerobic digesters treating food waste and dairy manure. Biol. Eng. 1: 233–242.

    Google Scholar 

  14. Callaghan, F. J., D. A. J. Wase, K. Thayanithy, and C. F. Forster (1999) Co-digestion of waste organic solids: Batch studies. Bioresour. Technol. 67: 117–122.

    Article  CAS  Google Scholar 

  15. Cuetos, M. J., C. Fernández, X. Gómez, and A. Morán (2011) Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol. Bioproc. Eng. 16: 1044–1052.

    Article  CAS  Google Scholar 

  16. Macias-Corral, M., Z. Samani, A. Hanson, G. Smith, P. Funk, H. Yu, and J. Longworth (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresour. Technol. 99: 8288–8293.

    Article  CAS  Google Scholar 

  17. Li, R., S. Chen, and X. Li (2010) Biogas production from anaerobic co-digestion of food waste with dairy manure in a two-phase digestion system. Appl. Biochem. Biotechnol. 160: 643–654.

    Article  CAS  Google Scholar 

  18. Liu, G., R. Zhang, H. M. El-Mashad, and R. Dong (2009) Effect of feed to inoculum ratios on biogas yields of food and green wastes. Bioresour. Technol. 100: 5103–5108.

    Article  CAS  Google Scholar 

  19. Zhu, H., W. Parker, R. Basnar, A. Proracki, P. Falletta, M. Béland, and P. Seto (2008) Biohydrogen production by anaerobic co-digestion of municipal food waste and sewage sludges. Int. J. Hydrogen Energ. 33: 3651–3659.

    Article  CAS  Google Scholar 

  20. Guo, G. L., W. H. Chen, W. H. Chen, L. C. Men, and W. S. Hwang (2008) Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour. Technol. 99: 6046–6053.

    Article  CAS  Google Scholar 

  21. Nagao, N., N. Tajima, M. Kawai, C. Niwa, N. Kurosawa, T. Matsuyama, F. M. Yusoff, and T. Toda (2012) Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste. Bioresour. Technol. 118: 210–218.

    Article  CAS  Google Scholar 

  22. Abbassi-Guendouz, A., D. Brockmann, E. Trably, C. Dumas, J. -P. Delgenès, J. -P. Steyer, and R. Escudié (2012) Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresour. Technol. 111: 55–61.

    Article  CAS  Google Scholar 

  23. Kleyböcker, A., M. Liebrich, W. Verstraete, M. Kraume, and H. Würdemann (2012) Earlywarning indicators for process failure due to organic overloading by rapeseed oil in one-stage continuously stirred tank reactor, sewage sludge and waste digesters. Bioresour. Technol. 123: 534–541.

    Article  Google Scholar 

  24. APHA (1998) Standard methods for the examination of water and wastewater. 20th ed. American Public Health Association, Washington D. C., USA.

    Google Scholar 

  25. Tawfik, A. and O. ElBatrawy (2012) Anaerobic biodegradation of personnel care products (PCPs) wastewater in an up-flow anaerobic sludge blanket (UASB) reactor. Desalin. Water Treat. 41: 232–239.

    Article  CAS  Google Scholar 

  26. El-Mashad, H. M., G. Zeeman, W. K. P. van Loon, G. P. A. Bot, and G. Lettinga (2004) Effect of temperature and temperature fluctuation on thermophilic anaerobic digestion of cattle manure. Bioresour. Technol. 95: 191–201.

    Article  CAS  Google Scholar 

  27. Poggi-Varaldo, H. M., R. Rodríguez-Vázquez, G. Fernández-Villagómez, and F. Esparza-García (1997) Inhibition of mesophilic solid-substrate anaerobic digestion by ammonia nitrogen. Appl. Microbiol. Biot. 47: 284–291.

    Article  CAS  Google Scholar 

  28. Wang, Q., G. M. Garrity, J. M. Tiedje, and J. R. Cole (2007) Naïve bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microb. 73: 5261–5267.

    Article  CAS  Google Scholar 

  29. Yu, Y., M. Breitbart, P. McNairnie, and F. Rohwer (2006) Fast-GroupII: A web-based bioinformatics platform for analyses of large 16S rDNA libraries. BMC Bioinformatics. 7: 57.

    Article  Google Scholar 

  30. Tang, X. D., S. G. Wan, Y. C. Zhang, and W. S. Luo (2012) Influence of garden green wastes addition and freeze-thaw pretreatment on food waste anaerobic digestion efficiency. J. Environ. Eng. Technol. 2: 512–518.

    Google Scholar 

  31. Lin, J., J. Zuo, L. Gan, P. Li, F. Liu, K. Wang, L. Chen, and H. Gan (2011) Effects of mixture ratio on anaerobic co-digestion with fruit and vegetable waste and food waste of China. J. Environ. Sci. 23: 1403–1408.

    Article  CAS  Google Scholar 

  32. Habiba, L., B. Hassib, and H. Moktar (2009) Improvement of activated sludge stabilisation and filterability during anaerobic digestion by fruit and vegetable waste addition. Bioresour. Technol. 100: 1555–1560.

    Article  CAS  Google Scholar 

  33. Li, Y., S. Y. Park, and J. Zhu (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew. Sust. Energ. Rev. 15: 821–826.

    Article  CAS  Google Scholar 

  34. He, Y. (1998) Anaerobic biological treatment of wastewater. 1 ed., China Light Industry Press, Beijing, China.

    Google Scholar 

  35. Hanaki, K., S. Hirunmasuwan, and T. Matsuo (1994) Protection of methanogenic bacteria from low pH and toxic materials by immobilization using polyvinyl alcohol. Water Res. 28: 877–885.

    Article  CAS  Google Scholar 

  36. Viéitez, E. R. and S. Ghosh (1999) Biogasification of solid wastes by two-phase anaerobic fermentation. Biomass Bioenerg. 16: 299–309.

    Article  Google Scholar 

  37. Leitão, R. C., A. C. van Haandel, G. Zeeman, and G. Lettinga (2006) The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review. Bioresour. Technol. 97: 1105–1118.

    Article  Google Scholar 

  38. Hansen, K. H., I. Angelidaki, and B. K. R. Ahring (1998) Anaerobic digestion of swine manure:inhibiton by ammonia. Water Res. 32: 5–12.

    Article  CAS  Google Scholar 

  39. Koster, I. W. and G. Lettinga (1988) Anaerobic digestion at extreme ammonia concentrations. Biol. Wastes. 25: 51–59.

    Article  CAS  Google Scholar 

  40. Liu, J. G., S. H. Zhao, and L. H. Zhang (2012) Study on anaerobic digestion performance of kitchen wastes: Inhibition of ammonia nitrogen and volatile acid on the anaerobic methanogenesis. Adv. Mater. Res. 347–353: 2497–2503.

    Article  Google Scholar 

  41. Calli, B., B. Mertoglu, B. Inanc, and O. Yenigun (2005) Effects of high free ammonia concentrations on the performances of anaerobic bioreactors. Proc. Biochem. 40: 1285–1292.

    Article  CAS  Google Scholar 

  42. Kashyap, D. R., K. S. Dadhich, and S. K. Sharma (2003) Biomethanation under psychrophilic conditions: A review. Bioresour. Technol. 87: 147–153.

    Article  CAS  Google Scholar 

  43. Dearman, B., P. Marschner, and R. H. Bentham (2006) Methane production and microbial community structure in single-stage batch and sequential batch systems anaerobically co-digesting food waste and biosolids. Appl. Microbiol. Biot. 69: 589–596.

    Article  CAS  Google Scholar 

  44. Cardinali-Rezende, J., A. M. Moraes, L. D. B. Colturato, E. Carneiro, I. Marriel, E. Chartone-Souza, and A. M. A. Nascimento (2011) Phylogenetic and physiological characterization of organic waste-degrading bacterial communities. World J. Microbiol. Biotechnol. 27: 245–252.

    Article  CAS  Google Scholar 

  45. Garcia, S. L., K. Jangid, W. B. Whitman, and K. C. Das (2011) Transition of microbial communities during the adaption to anaerobic digestion of carrot waste. Bioresour. Technol. 102: 7249–7256.

    Article  CAS  Google Scholar 

  46. Martín-González, L., R. Castro, M. A. Pereira, M. M. Alves, X. Font, and T. Vicent (2011) Thermophilic co-digestion of organic fraction of municipal solid wastes with FOG wastes from a sewage treatment plant: Reactor performance and microbial community monitoring. Bioresour. Technol. 102: 4734–4741.

    Article  Google Scholar 

  47. Zhang, D., J. Li, P. Guo, P. Li, Y. Suo, X. Wang, and Z. Cui (2011) Dynamic transition of microbial communities in response to acidification in fixed-bed anaerobic baffled reactors (FABR) of two different flow directions. Bioresour. Technol. 102: 4703–4711.

    Article  CAS  Google Scholar 

  48. Garcia-Peña, E. I., P. Parameswaran, D. W. Kang, M. Canul- Chan, and R. Krajmalnik-Brown (2011) Anaerobic digestion and co-digestion processes of vegetable and fruit residues: Process and microbial ecology. Bioresour. Technol. 102: 9447–9455.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensui Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wan, S., Sun, L., Sun, J. et al. Biogas production and microbial community change during the Co-digestion of food waste with chinese silver grass in a single-stage anaerobic reactor. Biotechnol Bioproc E 18, 1022–1030 (2013). https://doi.org/10.1007/s12257-013-0128-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0128-4

Keywords

Navigation