Skip to main content
Log in

Effects of an electric pulse on variation of bacterial community and metabolite production in kimchi-making culture

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Three, six, nine, and twelve V of electric pulse (EP) was applied to a culture of Weissella cibaria SKkimchi1 in MRS medium and kimchi-making culture (KMC). Viable cell number of SKkimchi1 in MRS medium was decreased in proportion to pulse intensity but that of bacteria in KMC was not. Lactic acid and ethanol produced by SKkimchi1 tended to be decreased in proportion to EP intensity but acetic acid was proportionally increased to EP intensity. Lactic acid, ethanol, and propionic acid produced in KMC were proportionally decreased, but acetic acid was proportionally increased to the EP intensity. Bacterial community and diversity in KMC were analyzed based on culture time by a temperature gradient gel electrophoresis (TGGE) technique. Most bacterial communities grown in freshly prepared kimchi belonged to Bacillus genus. Lactic acid bacteria responsible for kimchi fermentation began to grow on day 4, and were completely substituted for Bacillus genus on day 8, but some Bacillus genus began to grow again on day 12. However, bacterial community diversities were not different based on varying EP intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, W. P., Y. B. Cho, S. K. Chung, S. C. Lee, and M. J. Lee (2001) Changes in kimchi quality as affected by the addition of fermented anchovy sauce by-product. Food Sci. Biotechnol. 10: 475–478.

    Google Scholar 

  2. Kim, E. M., Y. M. Kim, J. H. Jo, and S. J. Woo (1998) A study on the housewives recognition and preference of sea foods and fermented sea foods added kimchi. Kor. J. Dietary Cult. 13: 19–26.

    Google Scholar 

  3. Moon, G. S., Y. S. Song, B. M. Ryu, and Y. S. Jeon (1997) The study on the qualities of commercial anchovy sauces and kimchis prepared with different anchovy sauces. Kor. J. Soc. Food Sci. 13: 272–277.

    Google Scholar 

  4. Ryu, J. Y., B. S. Lee, and H. S. Rhee (1984) Changes of organic acids and volatile flavor compounds in kimchi fermented with different ingredients. Kor. J. Food Sci. Technol. 16: 169–174.

    CAS  Google Scholar 

  5. Yoon, H. S., Y. J. Son, J. S. Han, J. S. Lee, and N. S. Han (2005) Comparison of D- and L-lactic acid contents in commercial kimchi and sauerkraut. Food Sci. Biotechnol. 14: 64–67.

    CAS  Google Scholar 

  6. Park, J. M., J. H. Shin, D. W. Lee, J. C. Song, H. J. Suh, U. J. Chang, and J. M. Kim (2010) Identification of the lactic acid bacteria in kimchi according to initial and over-ripened fermentation using PCR and 16S-rRNA gene sequence analysis. Food Sci. Biotechnol. 19: 541–546.

    Article  CAS  Google Scholar 

  7. Lee, C. W., C. Y. Ko, and D. M. Ha (1992) Microfloral changes of the lactic acid bacteria during kimchi fermentation and identification of the isolates. Kor. J. Appl. Microbiol. Biotechnol. 20: 102–109.

    CAS  Google Scholar 

  8. Cheigh, H. S. and K. Y. Park (1994) Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Crit. Rev. Food Sci. 34: 175–203.

    Article  CAS  Google Scholar 

  9. Lim, C. R., H. K. Park, and H. U. Han (1989) Reevaluation of isolation and identification of Gram-positive bacteria in kimchi. Kor. J. Microbiol. 27: 404–414.

    Google Scholar 

  10. Benthin, S. and J. Villadsen (1996) Amino acid utilization by Lactococcus lactis subsp. cremoris FD1 during growth on yeast extract or casein peptone. J. Appl. Bacteriol. 80: 65–72.

    Article  CAS  Google Scholar 

  11. Loubière, P., M. Cocaign-Bousquet, J. Matos, G. Goma, and N. D. Lindley (1997) Influence of end-products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. lactis. J. Appl. Microbiol. 82: 95–100.

    Article  Google Scholar 

  12. Van Niel, E. W. J. and B. Hahn-Hägerdal (1999) Nutrient requirements of Lactococci in defined growth media. Appl. Microbiol. Biotechnol. 52: 617–627.

    Article  Google Scholar 

  13. Keyer, K., A. S. Gort, and J. A. Imlay (1995) Superoxide and the production of oxidative DNA damage. J. Bacteriol. 177: 6782–6790.

    CAS  Google Scholar 

  14. Hooper, A. B. and A. A. DiSpirito (1985) In bacteria which grow on simple reductants, generation of a proton gradient involves extractytoplasmic oxidation of substrates. Microbiol. Rev. 49: 140–157.

    CAS  Google Scholar 

  15. Mheen, T. I. and T. W. Kwon (1984) Effect of temperature and salt concentration on kimchi fermentation. Kor. J. Food Sci. Technol. 16: 443–450.

    CAS  Google Scholar 

  16. Hamilton, W. A. and A. J. H. Sale (1967) Effects of high electric fields on microorganisms. II. Mechanism of action of the lethal effect. Biochim. Biophys. Acta 148: 789–800.

    Article  CAS  Google Scholar 

  17. Min, H. R., B. Y. Jeon, H. N. Seo, M. J. Kim, J. C. Kim, J. K. Kim, and D. H. Park (2009) Effect of low intensity pulsed electric field on ethanol fermentation and chemical component variation in a wine-making culture. Food Sci. Biotechnol. 18: 1358–1364.

    CAS  Google Scholar 

  18. Palaniappan, S., S. K. Sastry, and E. R. Richter (1990) Effects of electricity on microorganisms: A review. J. Food Proc. Preserv. 14: 393–414.

    Article  Google Scholar 

  19. Zhang, Q., B. L. Qin, G. V. Barbosa-Cánovas, and B. G. Swanson (1995) Inactivation of E. coli for food pasteurization by highstrength pulsed electric fields. J. Food Proc. Preserv. 19: 103–118.

    Article  Google Scholar 

  20. Grahl, T. and H. Maerkl (1996) Killing of microorganisms by pulsed electric fields. Appl. Microbiol. Biotechnol. 45: 148–157.

    Article  CAS  Google Scholar 

  21. Hulsheger, H., J. Potel, and E. G. Niemann (1983) Electric field effects on bacteria and yeast cells. Radiat. Environ. Biophys. 22: 149–162.

    Article  CAS  Google Scholar 

  22. Cheung, P. -Y. and B. K. Kinkle (2001) Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl. Environ. Microbiol. 67: 2222–2229.

    Article  CAS  Google Scholar 

  23. Park, W. P., D. S. Ahn, and D. S. Lee (1997) Comparison of quality characteristics of whole and sliced kimchi at different fermentation temperatures. Kor. J. Food Sci. Technol. 29: 784–789.

    Google Scholar 

  24. Jung, L. H. and E. R. Jeon (2007) Quality characteristics of commercial baechukimchi during long-term fermentation at refrigerated temperature. Food Sci. Biotechnol. 16: 924–927.

    CAS  Google Scholar 

  25. Kim, M. K., S. Y. Kim, C. J. Woo, and S. D. Kim (1994) Effect of air controlled fermentation on kimchi quality. J. Kor. Soc. Food Sci. Nutr. 23: 268–273.

    CAS  Google Scholar 

  26. Park, I. K. and S. D. Kim (1999) Effects of initial temperature during salting on the quality and microscopic observation of kimchi. Food Sci. Biotechnol. 8: 381–386.

    Google Scholar 

  27. Park, S. M., H. S. Kang, D. W. Park, and D. H. Park (2005) Electrochemical control of metabolic flux of Weissella kimchi sk10: Neutral red immobilized in cytoplasmic membrane as electron channel. J. Microbiol. Biotechnol. 15: 80–85.

    CAS  Google Scholar 

  28. Kang, H. S., S. M. Park, and D. H. Park (2004) Biocatalytic oxidation-reduction of pyruvate and ethanol by Weissella kimchi sk10 under aerobic and anaerobic conditions. J. Microbiol. Biotechnol. 14: 914–918.

    CAS  Google Scholar 

  29. Yi, J. Y., J. W. Choi, B. Y. Jeon, I. L. Jung, and D. H. Park (2012) Effects of a low-voltage electric pulse charged to culture soil on plant growth and variations of the bacterial community. Agri. Sci. 3: 339–346.

    Google Scholar 

  30. Kwon, E. A. and M. Kim (2007) Microbial evaluation of commercially packed kimchi products. Food Sci. Biotechnol. 16: 615–620.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doo Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, D.H., Jeon, B.Y. & Park, D.H. Effects of an electric pulse on variation of bacterial community and metabolite production in kimchi-making culture. Biotechnol Bioproc E 18, 909–917 (2013). https://doi.org/10.1007/s12257-013-0098-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0098-6

Keywords

Navigation