Skip to main content
Log in

Enhanced catalytic ability of Candida rugosa lipase immobilized on pore-enlarged hollow silica microspheres and cross-linked by modified dextran in both aqueous and non-aqueous phases

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Candida rugosa lipase (CRL) is one of the most widely used lipases. To enhance the catalytic abilities of CRL in both aqueous and non-aqueous phases, hollow silica microspheres (HSMSs) with a pore size of 18.07 nm were used as an immobilization support, and aldehydecontaining dextrans were employed to further cross-link the adsorbed CRL. In the experimental ranges examined, the loading amount of lipase linearly increased to 171 ± 3.4 mgprotein/gsupport with the CRL concentration and all the adsorption equilibriums were reached within 30 min. After simple cross-linking, the tolerance to pH 4.0 ∼ 8.0 as well as the thermal stability of immobilized CRL at 40 ∼ 80°C were both substantially increased, and 82 ± 2.1% activity remaining after the sixth reuse. The immobilized CRL was successfully applied to the resolution of racemic ibuprofen in non-aqueous phase. The initial reaction rate increased by 1.4- and 3.6-fold compared with the rates of adsorbed and native lipases, respectively. Furthermore, the R-ibuprofen was obtained at ee > 93%, and the enantiomeric ratio reached E > 140 at the conversion of 50 ± 1.5% within 48 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin, D., K. Park, J. H. Lee, K. Song, J. Kim, M. L. Seo, and J. H. Jung (2011) The selective immobilization of curcumin onto the internal surface of mesoporous hollow silica particles by covalent bonding and its controlled release. J. Mater. Chem. 21: 3641–3645.

    Article  CAS  Google Scholar 

  2. Murty, V. R., J. Bhat, and P. K. A. Muniswaran (2002) Hydrolysis of oils by using immobilized lipase enzyme: A review. Biotechnol. Bioproc. Eng. 7: 57–66.

    Article  CAS  Google Scholar 

  3. Salis, A., M. F. Casula, M. S. Bhattacharyya, M. Pinna, V. Solinas, and M. Monduzzi (2010) Physical and chemical lipase adsorption on SBA-15: Effect of different Interactions on enzyme loading and catalytic performance. ChemCatChem. 2: 322–329.

    Article  CAS  Google Scholar 

  4. Zhou, C., S. Zhu, X. Wu, B. Jiang, T. Cen, and S. Shen (2010) Post-immobilization of modified macromolecular reagents using assembled penicillin acylase for microenvironmental regulation of nanopores and enhancement of enzyme stability. Biotechnol. Bioproc. Eng. 15: 376–382.

    Article  CAS  Google Scholar 

  5. Cao, Z., J. Zhang, J. Zeng, L. Sun, F. Xu, Z. Cao, L. Zhang, and D. Yang (2009) Mesoporous silica hollow sphere (MSHS) for the bioelectrochemistry of horseradish peroxidase. Talanta 77: 943–947.

    Article  CAS  Google Scholar 

  6. Suarez, F. J., M. Sevilla, S. Alvarez, T. Valdes-Solis, and A. B. Fuertes (2007) Synthesis of highly uniform mesoporous submicrometric capsules of silicon oxycarbide and silica. Chem. Mater. 19: 3096–3098.

    Article  CAS  Google Scholar 

  7. Zoldesi, C. I. and A. Imhof (2005) Synthesis of monodisperse colloidal spheres, capsules, and microballoons by emulsion templating. Adv. Mater. 17: 924–928.

    Article  CAS  Google Scholar 

  8. Yu, J., L. Ge, P. Dai, S. Ge, and S. Liu (2010) A novel enzyme biosensor for glucose based on rhodanine derivative chemiluminescence system and mesoporous hollow silica microspheres receptor. Biosens. Bioelectron. 25: 2065–2070.

    Article  CAS  Google Scholar 

  9. Ni, D., L. Wang, Y. Sun, Z. Guan, S. Yang, and K. Zhou (2010) Amphiphilic hollow carbonaceous microspheres with permeable shells. Angew. Chem. Int. Ed. 49: 4223–4227.

    Article  CAS  Google Scholar 

  10. Jin, C., Y. Guo, S. Zhang, and W. Shen (2012) Synthesis of large spherical mesoporous silica using tween-80 and starch hydrolysis solution. Adv. Sci. Lett. 5: 204–207.

    Article  CAS  Google Scholar 

  11. Lee, D. H., J. M. Kim, H. Y. Shin, S. W. Kang, and S. W. Kim (2006) Biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Biotechnol. Bioproc. Eng. 11: 522–525.

    Article  CAS  Google Scholar 

  12. Benjamin, S. and A. Pandey (1998) Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast 14: 1069–1087.

    Article  CAS  Google Scholar 

  13. Lu, S., J. He, and X. Guo (2010) Architecture and performance of mesoporous silica-lipase hybrids via non-covalent interfacial adsorption. AIChE J. 56: 506–514.

    CAS  Google Scholar 

  14. Salis, A., D. Meloni, S. Ligas, M. F. Casula, M. Monduzzi, V. Solinas, and E. Dumitriu (2005) Physical and chemical adsorption of Mucor javanicus lipase on SBA-15 mesoporous silica. Synthesis, structural characterization and activity performance. Langmuir 21: 5511–5516.

    Article  CAS  Google Scholar 

  15. He, J., Y. Xu, H. Ma, Q. Zhang, D. G. Evans, and X. Duan (2006) Effect of surface hydrophobicity/hydrophilicity of mesoporous supports on the activity of immobilized lipase. J. Colloid Int. Sci. 298: 780–786.

    Article  CAS  Google Scholar 

  16. Serra, E., A. Mayoral, Y. Sakamoto, R. M. Blanco, and I. Diaz (2008) Immobilization of lipase in ordered mesoporous materials: Effect of textural and structural parameters. Microp. Mesop. Mater. 114: 201–213.

    Article  CAS  Google Scholar 

  17. Yiu, H. and P. A. Wright (2005) Enzymes supported on ordered mesoporous solids: A special case of an inorganic-organic hybrid. J. Mater. Chem. 15: 3690–3700.

    Article  CAS  Google Scholar 

  18. Gao, S. L., Y. J. Wang, X. Diao, G. S. Luo, and Y. Y. Dai (2010) Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresour. Tech. 101: 3830–3837.

    Article  CAS  Google Scholar 

  19. Migneault, I., C. Dartiguenave, M. J. Bertrand, and K. C. Waldron (2004) Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques 37:790–802.

    CAS  Google Scholar 

  20. Kim, M. I., J. Kim, J. Lee, H. Jia, H. Bin Na, J. K. Youn, J. H. Kwak, A. Dohnalkova, J. W. Grate, P. Wang, T. Hyeon, H. G. Park, and H. N. Chang (2007) Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: A simple and effective method for enzyme stabilization. Biotechnol. Bioeng. 96: 210–218.

    Article  CAS  Google Scholar 

  21. Rodrigues, D. S., A. A. Mendes, W. S. Adriano, L. Goncalves, and R. Giordano (2008) Multipoint covalent immobilization of microbial lipase on chitosan and agarose activated by different methods. J. Mol. Catal. B: Enzym. 51: 100–109.

    Article  CAS  Google Scholar 

  22. de la Casa, R. M., J. M. Guisan, J. M. Sanchez-Montero, and J. V. Sinisterra (2002) Modification of the activities of two different lipases from Candida rugosa with dextrans. Enz. Microb. Technol. 30: 30–40.

    Article  Google Scholar 

  23. de Maria, P. D., J. V. Sinisterra, J. M. Sanchez-Montero, M. Lotti, F. Valero, and A. R. Alcantara (2006) Acyl transfer strategy for the biocatalytical characterisation of Candida rugosa lipases in organic solvents. Enz. Microb. Technol. 38: 199–208.

    Article  Google Scholar 

  24. Merabet-Khelassi, M., Z. Houiene, L. Aribi-Zouioueche, and O. Riant (2012) Green methodology for enzymatic hydrolysis of acetates in non-aqueous media via carbonate salts. Tetrahedron: Asymmetry 23: 828–833.

    Article  CAS  Google Scholar 

  25. Gawronski, J., K. Gawronska, P. Skowronek, U. Rychlewska, B. Warzajtis, J. Rychlewski, M. Hoffmann, and A. Szarecka (1997) Factors affecting conformation of (R,R)-tartaric acid ester, amide and nitrile derivatives. X-ray diffraction, circular dichroism, nuclear magnetic resonance and ab initio studies. Tetrahedron 53: 6113–6144.

    CAS  Google Scholar 

  26. Basri, M., K. Ampon, W. Yunus, C. Razak, and A. B. Salleh (1994) Immobilization of hydrophobic lipase derivatives on to organic polymer beads. J. Chem. Technol. Biotechnol. 59: 37–44.

    Article  CAS  Google Scholar 

  27. Germain, P., T. Slagmolen, and R. R. Crichton (1989) Relation between stabilization and rigidification of the 3-dimensional structure of an enzyme. Biotechnol. Bioeng. 33: 563–569.

    Article  CAS  Google Scholar 

  28. Kobayashi, M. and K. Takatsu (1994) Cross-linked stabilization of trypsin with dextran-dialdehyde. Biosci. Biotechnol. Biochem. 58: 275–278.

    Article  CAS  Google Scholar 

  29. Zhao, H. and N. D. Heindel (1991) Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm. Res. 8: 400–402.

    Article  CAS  Google Scholar 

  30. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  31. Ozyilmaz, G. (2009) The effect of spacer arm on hydrolytic and synthetic activity of Candida rugosa lipase immobilized on silica gel. J. Mol. Catal. B: Enzym. 56: 231–236.

    Article  CAS  Google Scholar 

  32. Lopez N, M. A. Pernas, L. M. Pastrana, A. Sanchez, F. Valero, and M. L. Rua (2004) Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. Influence of the isoenzymatic profile on the lipase performance in organic media. Biotechnol. Progr. 20: 65–73.

    Article  CAS  Google Scholar 

  33. Natalello, A., D. Ami, S. Brocca, M. Lotti, and S. M. Doglia (2005) Secondary structure, conformational stability and glycosylation of a recombinant Candida rugosa lipase studied by fouriertransform infrared spectroscopy. Biochem. J. 385: 511–517.

    Article  CAS  Google Scholar 

  34. Yu, H. W., J. C. Wu, and C. B. Ching (2004) Enhanced activity and enantioselectivity of Candida rugosa lipase immobilized on macroporous adsorptive resins for ibuprofen resolution. Biotechnol. Lett. 26: 629–633.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, L., Jia, H., Yu, M. et al. Enhanced catalytic ability of Candida rugosa lipase immobilized on pore-enlarged hollow silica microspheres and cross-linked by modified dextran in both aqueous and non-aqueous phases. Biotechnol Bioproc E 18, 888–896 (2013). https://doi.org/10.1007/s12257-013-0044-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0044-7

Keywords

Navigation